1,175 research outputs found

    Optically interconnected phased arrays

    Get PDF
    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed

    Multilayer optical learning networks

    Get PDF
    A new approach to learning in a multilayer optical neural network based on holographically interconnected nonlinear devices is presented. The proposed network can learn the interconnections that form a distributed representation of a desired pattern transformation operation. The interconnections are formed in an adaptive and self-aligning fashioias volume holographic gratings in photorefractive crystals. Parallel arrays of globally space-integrated inner products diffracted by the interconnecting hologram illuminate arrays of nonlinear Fabry-Perot etalons for fast thresholding of the transformed patterns. A phase conjugated reference wave interferes with a backward propagating error signal to form holographic interference patterns which are time integrated in the volume of a photorefractive crystal to modify slowly and learn the appropriate self-aligning interconnections. This multilayer system performs an approximate implementation of the backpropagation learning procedure in a massively parallel high-speed nonlinear optical network

    Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    Get PDF
    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required

    Optically programmable gate array

    Get PDF
    The Optically Programmable Gate Array (OPGA), an optical version of a conventional FPGA, benefits from a direct parallel interface between an optical memory and a logic circuit. The OPGA utilizes a holographic memory accessed by an array of VCSELs to program its logic. An active pixel sensor array incorporated into the OPGA chip makes it possible to optically address the logic in a very short time allowing for rapid dynamic reconfiguration. Combining spatial and shift multiplexing to store the configuration pages in the memory, the OPGA module can be made compact. The reconfiguration capability of the OPGA can be applied to solve more efficiently problems in pattern recognition and database search

    Optical network democratization

    Get PDF
    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation.</jats:p

    Prospects and problems in designing image oriented information systems

    Get PDF
    There are slowly maturing and growing about us today a number of techniques which are likely to have a very significant effect upon the implementation of information systems in the near future. One of these techniques is pictorial data handling and interpretation, which is a subclass of the general area called pattern recognition. Pictorial data processing first became volumetrically significant in the case of photographic output of synchrotron bubble chambers which now deliver several million photographs per year. More recently, a surge of interest has developed in automatic interpretation of biological, medical, and weather satellite pictorial data. The automatic scanning of microscopic slides for the purpose of identifying certain morphological characters is an example of a rather complex task in the area of biological/medical laboratory automation. Some new viewpoints have begun to emerge from the experience of grappling with large volume pictorial data handling problems.published or submitted for publicatio

    Devices and networks for optical switching

    Get PDF
    This thesis is concerned with some aspects of the application of optics to switching and computing. Two areas are dealt with: the design of switching networks which use optical interconnects, and the development and application of the t-SEED optical logic device. The work on optical interconnects looks at the multistage interconnection network which has been proposed as a hybrid switch using both electronics and optics. It is shown that the architecture can be mapped from one dimensional to two dimensional format, so that the machine makes full use of the space available to the optics. Other mapping rules are described which allow the network to make optimum use of the optical interconnects, and the endpoint is a hybrid optical-electronic machine which should be able to outperform an all-electronic equivalent. The development of the t-SEED optical logic device is described, which is the integration of a phototransistor with a multiple quantum well optical modulator. It is found to be important to have the modulator underneath rather than on top of the transistor to avoid unwanted thyristor action. In order for the transistor to have a high gain the collector must have a low doping level, the exit window in the substrate must be etched all the way to the emitter layer, and the etch must not damage the emitter-base junction. A real optical gain of 1.6 has been obtained, which is higher than has ever been reached before but is not as high as should be possible. Improvements to the device are suggested. A new model of the Fabry-Perot cavity is introduced which helps considerably in the interpretation of experimental measurements made on the quantum well modulators. Also a method of improving the contrast of the multiple quantum well modulator by grading the well widths is proposed which may find application in long wavelength transmission modulators. Some systems which make use of the t-SEED are considered. It is shown that the t-SEED device has the right characteristics for use as a neuron element in the optical implementation of a neural network. A new image processing network for clutter removal in binary images is introduced which uses the t-SEED, and a brief performance analysis suggests that the network may be superior to an all-electronic machine

    Integrated SiPh Flex-LIONS Module for All-to-All Optical Interconnects with Bandwidth Steering

    Get PDF
    We experimentally demonstrate the first all-to-all optical interconnects with bandwidth steering using an integrated 8×8 SiPh Flex-LIONS module. Experimental results show a 5-dB worst-case crosstalk penalty and 25 Gb/s to 100 Gb/s bandwidth steerin
    • …
    corecore