124 research outputs found

    Comparative analysis of long-haul system based on SSB modulation utilising dual parallel Mach–Zehnder modulators

    Get PDF
    In this paper, we have proposed a long-haul optical transmission system, based on a single sideband (SSB) modulation scheme. Analytical and simulation models have been developed, optimised and demonstrated for the proposed SSB system configurations. The SSB modulation scheme was proposed to overcome dispersion in the fibre. We have shown that the related link losses can be minimized by increasing the quality of the optical signal at the modulation. We have optimised the radio over fibre configuration scheme based on dual parallel dual drive Mach–Zehnder Modulator, thereby increasing transmission length of the fibre. With the proposed SSB, by suppressing some of the harmonics and cancelling one of the sidebands, we have halved the RF power fading and interference. The developed analytical (theoretical/mathematical) model agrees very well with the simulation results using two (both) different commercial simulation tools. The optical signal is boosted while minimizing the number of repeaters. We report a SSB configuration, compensation and amplification with individual spans of 150 km, by extending the length of the link up to 3250 km. The proposed system configuration exhibits high performance with less complexity and lower cost

    Performance improvement and cost reduction techniques for radio over fiber communications

    No full text
    Advanced cost reduction and performance improvement techniques conceived for Radio Over Fiber (ROF) communications are considered. ROF techniques are expected to form the backbone of the future 5G generation of wireless networks. The achievable link performance and the associated deployement cost constitute the most salient metrics of a ROF architecture. In this paper, we commence by providing a rudimentary overview of the ROF architecture and then elaborate on ROF techniques designed for improving the attainable system performance. We conclude by describing the ROF techniques conceived for reducing the ROF system installation costs

    Microwave Photonic Signal Processing Using On-Chip Nonlinear Optics

    Get PDF
    The field of microwave photonics (MWP) emerged as a solution to the challenges faced by electronic systems when dealing with high-bandwidth RF and microwave signals. Photonic devices are capable of handling immense bandwidths thanks to the properties of light. MWP therefore employs such devices to process and distribute the information carried by RF and microwave signals, enabling significantly higher capacity compared to conventional electronics. The photonic devices traditionally used in MWP circuits have mainly comprised bulky components, such as spools of fibre and benchtop optical amplifiers. While achieving impressive performance, these systems were not capable of competing with electronics in terms of size and portability. More recently, research has focused on the application of photonic chip technology to the field of MWP in order to reap the benefits of integration, such as reductions in size, weight, cost, and power consumption. Integrated MWP however is still in its infancy, and ongoing research efforts are exploring new ways to match integrated photonic devices to the unique requirements of MWP circuits. This work investigates the application of on-chip nonlinear optical interactions to MWP. Nonlinear optics enables light-on-light interactions (not normally possible in a linear regime) which open a vast array of powerful functionalities. In particular, this thesis focuses on stimulated Brillouin scattering, resulting from the interaction of light with hypersonic sound waves, and four-wave mixing, where photons exchange energies. These two nonlinear effects are applied to implement MWP ultra-high suppression notch filters, wideband phase shifters, and ultra-fast instantaneous frequency measurement systems. Experimental demonstrations using integrated optical waveguides confirm record results

    Microwave Photonic Signal Processing Using On-Chip Nonlinear Optics

    Get PDF
    The field of microwave photonics (MWP) emerged as a solution to the challenges faced by electronic systems when dealing with high-bandwidth RF and microwave signals. Photonic devices are capable of handling immense bandwidths thanks to the properties of light. MWP therefore employs such devices to process and distribute the information carried by RF and microwave signals, enabling significantly higher capacity compared to conventional electronics. The photonic devices traditionally used in MWP circuits have mainly comprised bulky components, such as spools of fibre and benchtop optical amplifiers. While achieving impressive performance, these systems were not capable of competing with electronics in terms of size and portability. More recently, research has focused on the application of photonic chip technology to the field of MWP in order to reap the benefits of integration, such as reductions in size, weight, cost, and power consumption. Integrated MWP however is still in its infancy, and ongoing research efforts are exploring new ways to match integrated photonic devices to the unique requirements of MWP circuits. This work investigates the application of on-chip nonlinear optical interactions to MWP. Nonlinear optics enables light-on-light interactions (not normally possible in a linear regime) which open a vast array of powerful functionalities. In particular, this thesis focuses on stimulated Brillouin scattering, resulting from the interaction of light with hypersonic sound waves, and four-wave mixing, where photons exchange energies. These two nonlinear effects are applied to implement MWP ultra-high suppression notch filters, wideband phase shifters, and ultra-fast instantaneous frequency measurement systems. Experimental demonstrations using integrated optical waveguides confirm record results

    Single ODSB Radio-Over-Fiber Signal Supports STBC at Each RAP

    Full text link

    SBS-based Tunable Microwave Photonic Notch Filter and Amplifier Simultaneously with Enhanced Gain, Bandwidth, and Polarisation Control up to 50 GHz

    Get PDF
    Stimulated Brillouin Scattering (SBS) based filters can provide high gain, narrow bandwidth, and wideband tunability, which are critical for modern radio frequency systems. However, it is important to optimise all performance parameters to obtain stable response over wideband along with high gain. We present a novel SBS-based Tuneable Microwave Photonics Notch Filter and Amplifier (TMWPNFA) configuration that can perform notch filtering, selective amplification or both simultaneously by exploiting additional Brillouin gain modes and using both SBS stokes and anti-stokes in single-mode fibre. The TMWPNFA amplification and notch suppression are shown for maximum of 50 GHz in Radio Domain, which is the highest reported tunability to our knowledge. The TMWPNFA exhibits high gain of ≃35dB by employing Radio Frequency Amplifier. The TMWPNFA achieves SBS gains from 24 to 4 dB over the range. The suppression achieved by TMWPNFA ranges from 12 to 3 dB. We demonstrated the SBS pump's RF Mixing approach for increasing the -3dB bandwidth of TMWPNFA to 35 MHz, resulting in greater separation of the amplification and suppression bands. The TMWPNFA phase noise distortion caused by SBS is measured to be < -8.6dBc/Hz at 125 kHz Spacing. The filter achieved sharp -3 dB bandwidth of 20 MHz and Q factor of 200 to 2500. The Degree of Polarisation of the SBS pump is shown to be the source of 6 dB gain control. It is shown that additional sound modes produced by SBS, separated by ≈2 x Bandwidth of SBS can be used for notch filtering while simultaneously achieving selective amplification. The proposed 50GHz TMWPNFA would provide unique benefits for satellite, aerospace and beyond communication technologies

    Investigation of Millimetre Wave Generation by stimulated Brillouin scattering for Radio Over Fibre Applications

    Get PDF
    The rising demand for greater bandwidth and increased flexibility in modern telecommunication systems has lead to increased research activities in the field of Millimetre Wave-Photonics. The combination of an optical access network and the radio propagation of high data-rate signals provides a solution to meet these demands. Such structures are also known as Radio Over Fibre Systems. They implement the optical Millimetre Wave generation in a central station and the transmission of radio waves via a remote antenna unit to the radio cell. The expected data rate is very high, due to the fact that both the optical and the radio-link provide a large transmission bandwidth. This dissertation concerns the investigation of a new and simple method for the flexible generation of Millimetre Waves for application in Radio Over Fibre systems. The method is based on the heterodyne detection of two optical waves in a photo detector. By externally amplitude modulating the optical wave, different sidebands are generated. Two of these sidebands are selected and amplified by the non-linear effect of stimulated Brillouin scattering. As a gain medium, a standard single mode fibre is used. According to the theoretical investigation, very good carrier performances are possible with this method, and a computer simulation shows little degradation in the signals during their propagation in the system. The measured results are in strong agreement with the theoretical analysis. Experimental results show that the system can be fully utilised as a Radio Over Fibre system. The thesis is divided into five main parts: Introduction – Theory – Simulation – Experiment – Conclusion. In the Introduction, an overview of the current methods of Millimetre Wave Generation, Radio Over Fibre and the nonlinear effects of Brillouin scattering is given. In the theoretical section, a differential equation system which mathematically describes the system is derived and also solved numerically. With a proof of the concept set-up, the simulated results are compared with the experimental data. In the last section the work is conclude and future tasks are discus

    Turbulence mitigation in a 28 GHz radio-over-free-space optics link using an integrated Mach–Zehnder interferometer and a diversity combining receiver

    Get PDF
    The authors propose an integrated Mach-Zehnder interferometer and diversity combining receiver to mitigate the atmospheric turbulence-induced fading in a millimetre-wave (mmW) radio-over-free-space optics (RoFSO) link. They use a carrier frequency of 28 GHz as recommended for the fifth-generation wireless access networks and consider two optical mmW signal generation schemes, namely double-sideband (DSB) and single-sideband (SSB). In direct detection (DD)-based RoFSO, the link performance is limited by atmospheric turbulence. They show that the proposed Rx can overcome this detrimental effect, which is verified by investigation of a 10 Gb/s 16-quadrature amplitude modulation orthogonal frequency-division-multiplexing signal at 28 GHz over a 1 km free-space optics link under weak and strong turbulence regimes. For the DSB scenario, the proposed Rx offers improved error vector magnitudes of about 0.8 and 5.7%, and modulation error ratios of 1.3 and 4.9 dB under weak and strong turbulence regimes, respectively, compared with the DD receiver (DD Rx). For the SSB scenario under weak turbulence, the proposed Rx achieves a 4 dB improvement in the receiver sensitivity and four orders of magnitude enhancement in the bit error rate over the DD Rx. The proposed Rx can be integrated on a single chip for further cost reduction

    Photonic Vector Processing Techniques for Radiofrequency Signals

    Full text link
    [EN] The processing of radiofrequency signals using photonics means is a discipline that appeared almost at the same time as the laser and the optical fibre. Photonics offers the capability of managing broadband radiofrequency (RF) signals thanks to its low transmission attenuation, a variety of linear and non-linear phenomena and, recently, the potential to implement integrated photonic subsystems. These features open the door for the implementation of multiple functionalities including optical transportation, up and down frequency conversion, optical RF filtering, signal multiplexing, de-multiplexing, routing and switching, optical sampling, tone generation, delay control, beamforming and photonic generation of digital modulations, and even a combination of several of these functionalities. This thesis is focused on the application of vector processing in the optical domain to radiofrequency signals in two fields of application: optical beamforming, and photonic vector modulation and demodulation of digital quadrature amplitude modulations. The photonic vector control enables to adjust the amplitude and phase of the radiofrequency signals in the optical domain, which is the fundamental processing that is required in different applications such as beamforming networks for direct radiating array (DRA) antennas and multilevel quadrature modulation. The work described in this thesis include different techniques for implementing a photonic version of beamforming networks for direct radiating arrays (DRA) known as optical beamforming networks (OBFN), with the objectives of providing a precise control in terrestrial applications of broadband signals at very high frequencies above 40 GHz in communication antennas, optimizing the size and mass when compared with the electrical counterparts in space application, and presenting new photonic-based OBFN functionalities. Thus, two families of OBFNs are studied: fibre-based true time delay architectures and integrated networks. The first allow the control of broadband signals using dispersive optical fibres with wavelength division multiplexing techniques and advanced functionalities such as direction of arrival estimation in receiving architectures. In the second, passive OBFNs based on monolithically-integrated Optical Butler Matrices are studied, including an ultra-compact solution using optical heterodyne techniques in silicon-on-insulator (SOI) material, and an alternative implementing a homodyne counterpart in germanium doped silica material. In this thesis, the application of photonic vector processing to the generation of quadrature digital modulations has also been investigated. Multilevel modulations are based on encoding digital information in discrete states of phase and amplitude of an electrical signal to enhance spectral efficiency, as for instance, in quadrature modulation. The signal process required for generating and demodulating this kind of signals involves vector processing (phase and amplitude control) and frequency conversion. Unlike the common electronic or digital implementation, in this thesis, different photonic based signal processing techniques are studied to produce digital modulation (photonic vector modulation, PVM) and demodulation (PVdM). These techniques are of particular interest in the case of broadband signals where the data rate required to be managed is in the order of gigabit per second, for applications like wireless backhauling of metro optical networks (known as fibre-to-the-air). The techniques described use optical dispersion in optical fibres, wavelength division multiplexing and photonic up/down conversion. Additionally, an optical heterodyne solution implemented monolithically in a photonic integrated circuit (PIC) is also described.[ES] El procesamiento de señales de radiofrecuencia (RF) utilizando medios fotónicos es una disciplina que apareció casi al mismo tiempo que el láser y la fibra óptica. La fotónica ofrece la capacidad de manipular señales de radiofrecuencia de banda ancha, una baja atenuación, procesados basados en una amplia variedad de fenómenos lineales y no lineales y, recientemente, el potencial para implementar subsistemas fotónicos integrados. Estas características ofrecen un gran potencial para la implementación de múltiples funcionalidades incluyendo transporte óptico, conversión de frecuencia, filtrado óptico de RF, multiplexación y demultiplexación de señales, encaminamiento y conmutación, muestreo óptico, generación de tonos, líneas de retardo, conformación de haz en agrupaciones de antenas o generación fotónica de modulaciones digitales, e incluso una combinación de varias de estas funcionalidades. Esta tesis se centra en la aplicación del procesamiento vectorial en el dominio óptico de señales de radiofrecuencia en dos campos de aplicación: la conformación óptica de haces y la modulación y demodulación vectorial fotónica de señales digitales en cuadratura. El control fotónico vectorial permite manipular la amplitud y fase de las señales de radiofrecuencia en el dominio óptico, que es el procesamiento fundamental que se requiere en diferentes aplicaciones tales como las redes de conformación de haces para agrupaciones de antenas y en la modulación en cuadratura. El trabajo descrito en esta tesis incluye diferentes técnicas para implementar una versión fotónica de las redes de conformación de haces de en agrupaciones de antenas, conocidas como redes ópticas de conformación de haces (OBFN). Se estudian dos familias de redes: arquitecturas de retardo en fibra óptica y arquitecturas integradas. Las primeras permiten el control de señales de banda ancha utilizando fibras ópticas dispersivas con técnicas de multiplexado por división de longitud de onda y funcionalidades avanzadas tales como la estimación del ángulo de llegada de la señal en la antena receptora. En la segunda, se estudian redes de conformación pasivas basadas en Matrices de Butler ópticas integradas, incluyendo una solución ultra-compacta utilizando técnicas ópticas heterodinas en silicio sobre aislante (SOI), y una alternativa homodina en sílice dopado con germanio. En esta tesis, también se han investigado técnicas de procesado vectorial fotónico para la generación de modulaciones digitales en cuadratura. Las modulaciones multinivel codifican la información digital en estados discretos de fase y amplitud de una señal eléctrica para aumentar su eficiencia espectral, como por ejemplo la modulación en cuadratura. El procesado necesario para generar y demodular este tipo de señales implica el procesamiento vectorial (control de amplitud y fase) y la conversión de frecuencia. A diferencia de la implementación electrónica o digital convencional, en esta tesis se estudian diferentes técnicas de procesado fotónico tanto para la generación de modulaciones digitales (modulación vectorial fotónica, PVM) como para su demodulación (PVdM). Esto es de particular interés en el caso de señales de banda ancha, donde la velocidad de datos requerida es del orden de gigabits por segundo, para aplicaciones como backhaul inalámbrico de redes ópticas metropolitanas (conocida como fibra hasta el aire). Las técnicas descritas se basan en explotar la dispersión cromática de la fibra óptica, la multiplexación por división de longitud de onda y la conversión en frecuencia. Además, se presenta una solución heterodina implementada monolíticamente en un circuito integrado fotónico (PIC).[CA] El processament de senyals de radiofreqüència (RF) utilitzant mitjans fotònics és una disciplina que va aparèixer gairebé al mateix temps que el làser i la fibra òptica. La fotònica ofereix la capacitat de manipular senyals de radiofreqüència de banda ampla, una baixa atenuació, processats basats en una àmplia varietat de fenòmens lineals i no lineals i, recentment, el potencial per implementar subsistemes fotònics integrats. Aquestes característiques ofereixen un gran potencial per a la implementació de múltiples funcionalitats incloent transport òptic, conversió de freqüència, filtrat òptic de RF, multiplexació i demultiplexació de senyals, encaminament i commutació, mostreig òptic, generació de tons, línies de retard, conformació de feix en agrupacions d'antenes i la generació fotònica de modulacions digitals, i fins i tot una combinació de diverses d'aquestes funcionalitats. Aquesta tesi es centra en l'aplicació del processament vectorial en el domini òptic de senyals de radiofreqüència en dos camps d'aplicació: la conformació òptica de feixos i la modulació i demodulació vectorial fotònica de senyals digitals en quadratura. El control fotònic vectorial permet manipular l'amplitud i la fase dels senyals de radiofreqüència en el domini òptic, que és el processament fonamental que es requereix en diferents aplicacions com ara les xarxes de conformació de feixos per agrupacions d'antenes i en modulació multinivell. El treball descrit en aquesta tesi inclou diferents tècniques per implementar una versió fotònica de les xarxes de conformació de feixos en agrupacions d'antenes, conegudes com a xarxes òptiques de conformació de feixos (OBFN), amb els objectius de proporcionar un control precís en aplicacions terrestres de senyals de banda ampla a freqüències molt altes per sobre de 40 GHz en antenes de comunicacions, optimitzant la mida i el pes quan es compara amb els homòlegs elèctrics en aplicacions espacials, i la presentació de noves funcionalitats fotòniques per agrupacions d'antenes. Per tant, s'estudien dues famílies de OBFNs: arquitectures de retard en fibra òptica i arquitectures integrades. Les primeres permeten el control de senyals de banda ampla utilitzant fibres òptiques dispersives amb tècniques de multiplexació per divisió en longitud d'ona i funcionalitats avançades com ara l'estimació de l'angle d'arribada del senyal a l'antena receptora. A la segona, s'estudien xarxes de conformació passives basades en Matrius de Butler òptiques en fotònica integrada, incloent una solució ultra-compacta utilitzant tècniques òptiques heterodinas en silici sobre aïllant (SOI), i una alternativa homodina en sílice dopat amb germani. D'altra banda, també s'ha investigat en aquesta tesi tècniques de processament vectorial fotònic per a la generació de modulacions digitals en quadratura. Les modulacions multinivell codifiquen la informació digital en estats discrets de fase i amplitud d'un senyal elèctric per augmentar la seva eficiència espectral, com ara la modulació en quadratura. El processat necessari per generar i desmodular aquest tipus de senyals implica el processament vectorial (control d'amplitud i fase) i la conversió de freqüència. A diferència de la implementació electrònica o digital convencional, en aquesta tesi s'estudien diferents tècniques de processament fotònic tant per a la generació de modulacions digitals (modulació vectorial fotònica, PVM) com per la seva demodulació (PVdM). Això és de particular interès en el cas de senyals de banda ampla, on la velocitat de dades requerida és de l'ordre de gigabits per segon, per a aplicacions com backhaul sense fils de xarxes òptiques metropolitanes (coneguda com fibra fins l'aire). Les tècniques descrites es basen en explotar la dispersió cromàtica de la fibra òptica, la multiplexació per divisió en longitud d'ona i la conversió en freqüència. A més, es presePiqueras Ruipérez, MÁ. (2016). Photonic Vector Processing Techniques for Radiofrequency Signals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63264TESI
    corecore