2,469 research outputs found

    Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks

    Get PDF
    Quality-of-service (QoS) support in Ethernet passive optical networks is a crucial concern. We propose a new dynamic bandwidth allocation (DBA) algorithm for service differentiation that meets the service-level agreements (SLAs) of the users. The proposed delay-aware (DA) online DBA algorithm provides constant and predictable average packet delay and reduced delay variation for the high-and medium-priority traffic while keeping the packet loss rate under check. We prove the effectiveness of the proposed algorithm by exhaustive simulations

    Optical communications and networking solutions for the support of C-RAN in a 5G environment

    Get PDF
    The widespread availability of mobile devices such as tablets and smartphones has led to fast-increasing mobile data traffic in the last few years [...

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version

    Full-Service MAC Protocol for Metro-Reach GPONs

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”An advanced medium access control protocol is presented demonstrating dynamic bandwidth allocation for long-reach gigabit-capable passive optical networks (GPONs). The protocol enables the optical line terminal to overlap the idle time slots in each packet transmission cycle with a virtual polling cycle to increase the effective transmission bandwidth. Contrasting the new scheme with developed algorithms, network modeling has exhibited significant improvement in channel throughput, mean packet delay, and packet loss rate in the presence of class-of-service and service-level differentiation. In particular, the displayed 34% increase in the overall channel throughput and 30 times reduction in mean packet delay for service-level 1 and service-level 2 optical network units (ONUs) at accustomed 50% ONU load constitutes the highest extended-reach GPON performance reported up to date.Peer reviewe

    Dynamic bandwidth management with service differentiation over ethernet passive optical networks

    Get PDF
    Ethernet passive optical networks (EPONs) address the first mile of the communication infrastructure between the service provider central offices and the customer sites. As a low-cost, high speed technology, EPONs are deemed as the solution to the bottleneck problem of the broadband access network. A major feature of EPONs is the utility of a shared upstream channel among the end users. Only a single optical network unit (GNU) may transmit during a timeslot to avoid data collisions. In order to provide diverse quality of service (QoS), the bandwidth management of the upstream channel is essential for the successful implementation of EPONs, and thus, an efficient medium access control is required to facilitate statistical multiplexing among local traffics. This dissertation addresses the upstream bandwidth allocation over EPONs. An efficient mechanism, i.e., limited sharing with traffic prediction (LSTP), has been proposed to arbitrate the upstream bandwidth among ONUs. The MultiPoint Control Protocol (MPCP) messages, which are stipulated by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force, are adopted by LSTP to facilitate the dynamic bandwidth negotiation between an GNU and the OLT. The bandwidth requirement of an ONU includes the already enqueued frames and the predicted incoming frames during the waiting time. The OLT arbitrates the bandwidth assignment based on the queue status report from an GNU, the traffic prediction, and the agreed service contract. With respect to the performance evaluation, theoretical analysis on the frame loss, the frame delay, and the queue length has been conducted. The quantitative results demonstrate that 1) the innovative LSTP mechanism dynamically allocates the upstream bandwidth among multiple ONUs; 2) the traffic predictor at the OLT delivers satisfactory prediction for the bursty self-similar traffic, and thereby, contributing to the reduction of frame loss, frame delay, and queue length; and 3) the bandwidth arbitration at the OLT effectively restricts the aggressive bandwidth competition among ONUs by adopting the service level agreement (SLA) parameter as the upper bound. Aside from analysis, the LSTP mechanism has been substantiated by experimental simulations. In order to differentiate the service provisioning among diverse users, LSTP is further enhanced with the support of dynamic bandwidth negotiation based on multiple queues. The incoming traffics are first classified into three classes, and then enqueued into the corresponding queues. A traffic predictor is dedicated to one class of traffic from an GNU. Service differentiation among classes are provided by the combination of queuing and scheduling at the GNU side. At the OLT side, the bandwidth allocation for each class of traffic is based on the reported queue status and the traffic prediction, and is upper-bounded by the SLA parameter. Experimental simulations have justified the feasibility of providing service differentiation over the broadband EPONs
    corecore