7 research outputs found

    Modular expansion and reconfiguration of shufflenets in multi-star implementations.

    Get PDF
    by Philip Pak-tung To.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 57-60).Chapter 1 --- Introduction --- p.1Chapter 2 --- Modular Expansion of ShuffleNet --- p.8Chapter 2.1 --- Multi-Star Implementation of ShuffleNet --- p.10Chapter 2.2 --- Modular Expansion of ShuffleNet --- p.21Chapter 2.2.1 --- Expansion Phase 1 --- p.21Chapter 2.2.2 --- Subsequent Expansion Phases --- p.24Chapter 2.3 --- Discussions --- p.26Chapter 3 --- Reconfigurability of ShuffleNet in Multi-Star Implementation --- p.33Chapter 3.1 --- Reconfigurability of ShuffleNet --- p.34Chapter 3.1.1 --- Definitions --- p.34Chapter 3.1.2 --- Rearrangable Conditions --- p.35Chapter 3.1.3 --- Formal Representation --- p.38Chapter 3.2 --- Maximizing Network Reconfigurability --- p.40Chapter 3.2.1 --- Rules to maximize Tsc and Rsc --- p.41Chapter 3.2.2 --- Rules to Maximize Z --- p.42Chapter 3.3 --- Channels Assignment Algorithms --- p.43Chapter 3.3.1 --- Channels Assignment Algorithm for w = p --- p.45Chapter 3.3.2 --- Channels Assignment Algorithm for w = p. k --- p.46Chapter 3.3.3 --- Channels Assignment Algorithm for w=Mpk --- p.49Chapter 3.4 --- Discussions --- p.51Chapter 4 --- Conclusions --- p.5

    Ultra-High-speed Photonic Add-Drop Multiplexers for Wave-Division-Multiplexed Networks

    Full text link

    Improving Scalability and Usability of Parallel Runtime Environments for High Availability and High Performance Systems

    Get PDF
    The number of processors embedded in high performance computing platforms is growing daily to solve larger and more complex problems. Hence, parallel runtime environments have to support and adapt to the underlying platforms that require scalability and fault management in more and more dynamic environments. This dissertation aims to analyze, understand and improve the state of the art mechanisms for managing highly dynamic, large scale applications. This dissertation demonstrates that the use of new scalable and fault-tolerant topologies, combined with rerouting techniques, builds parallel runtime environments, which are able to efficiently and reliably deliver sets of information to a large number of processes. Several important graph properties are provided to illustrate the theoretical capability of these topologies in terms of both scalability and fault-tolerance, such as reasonable degree, regular graph, low diameter, symmetric graph, low cost factor, low message traffic density, optimal connectivity, low fault-diameter and strongly resilient. The dissertation builds a communication framework based on these topologies to support parallel runtime environments. Such a framework can handle multiple types of messages, e.g., unicast, multicast, broadcast and all-gather. Additionally, the communication framework has been formally verified to work in both normal and failure circumstances without creating any of the common problems such as broadcast storm, deadlock and non-progress cycle

    Joint optimization of topology, switching, routing and wavelength assignment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 279-285).To provide end users with economic access to high bandwidth, the architecture of the next generation metropolitan area networks (MANs) needs to be judiciously designed from the cost perspective. In addition to a low initial capital investment, the ultimate goal is to design networks that exhibit excellent scalability - a decreasing cost-per-node-per-unit-traffic as user number and transaction size increase. As an effort to achieve this goal, in this thesis we search for the scalable network architectures over the solution space that embodies the key aspects of optical networks: fiber connection topology, switching architecture selection and resource dimensioning, routing and wavelength assignment (RWA). Due to the inter-related nature of these design elements, we intended to solve the design problem jointly in the optimization process in order to achieve over-all good performance. To evaluate how the cost drives architectural tradeoffs, an analytical approach is taken in most parts of the thesis by first focusing on networks with symmetric and well defined structures (i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic), which are fair representations that give us suggestions of trends, etc.(cont.) We starts with a examination of various measures of regular topologies. The average minimum hop distance plays a crucial role in evaluating the efficiency of network architecture. From the perspective of designing optical networks, the amount of switching resources used at nodes is proportional to the average minimum hop distance. Thus a smaller average minimum hop distance translates into a lower fraction of pass-through traffic and less switching resources required. Next, a first-order cost model is set up and an optimization problem is formulated for the purpose of characterizing the tradeoffs between fiber and switching resources. Via convex optimization techniques, the joint optimization problem is solved analytically for (static) uniform traffic and symmetric networks. Two classes of regular graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identified to yield lower and upper cost bounds, respectively. The investigation of the cost scalability further demonstrates the advantage of the Generalized Moore Graphs as benchmark topologies: with linear switching cost structure, the minimal normalized cost per unit traffic decreases with increasing network size for the Generalized Moore Graphs and their relatives.(cont.) In comparison, for less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even increases with increasing network size. The study also reveals other attractive properties of Generalized Moore Graphs in conjunction with minimum hop routing - the aggregate network load is evenly distributed over each fiber. Thus, Generalized Moore Graphs also require the minimum number of wavelengths to support a given uniform traffic demand. Further more, the theoretical works on the Generalized Moore Graphs and their close relatives are extended to study more realistic design scenarios in two aspects. One aspect addresses the irregular topologies and (static) non-uniform traffic, for which the results of Generalized Moore networks are used to provide useful estimates of network cost, and are thus offering good references for cost-efficient optical networks. The other aspect deals with network design under random demands. Two optimization formulations that incorporate the traffic variability are presented.(cont.) The results show that as physical architecture, Generalized Moore Graphs are most robust (in cost) to the demand uncertainties. Analytical results also provided design guidelines on how optimum dimensioning, network connectivity, and network costs vary as functions of risk aversion, service level requirements, and probability distributions of demands.by Kyle Chi Guan.Ph.D

    Nodal distribution strategies for designing an overlay network for long-term growth

    Get PDF
    Scope and Method of Study:This research looked at nodal distribution design issues associated with building an overlay network on top of an existing legacy network with overlay network switches and links not necessarily matching the switch and link locations of the underlying network. A mathematical model with two basic components, switch costs and link costs, was developed for defining the total cost of a network overlay. The nature of the underlying legacy topology determines the dominant factor, link or switch costs to the total cost function as well as the unit cost for switches and links.Findings and Conclusions:The three design heuristics presented first, locate overlay switches at nodes in the center of the legacy network as opposed to the periphery; second, locate overlay switches at legacy nodes with high connectivity; and third, locate overlay switches at legacy nodes with high traffic flow demands, can be used to help point to the direction of keeping costs under control when design changes are required. Applying the concept of efficient frontiers to the world of network design and building a suite of best designs gives the network designer greater insight into how to design the best network in the face of changing real-world constraints. For the cost model and the case studies evaluated using the design strategies in this study, distributed approaches generally tend to be a good choice when the link costs dominate the total cost function because total path distances and therefore link costs need to be minimized in preference over switch costs. A distributed overlay tends to have lower link costs because there is usually a greater probability that total path distances can be minimized because of greater connectivity. More connections set up the potential for more traffic flow path choices allowing each traffic flow to be sent along shorter paths. In legacy network topology designs that have many nodes with high connectivity, the overlay link costs can be relatively similar between designs and the switch costs can have a large impact upon total cost

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators
    corecore