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Abstract 

ShuffleNet is one of the many architectures proposed for multihop optical net-

works. ShuffleNet is popular because of its relatively low mean-internodal dis-

tance and simplied routing schemes. ShuffleNet, however, is not without draw-

backs. In this thesis, we investigate two problematic issues of ShuffleNet, namely 

modular expansion of the network and reconfiguration of the network in multi-

star implementation. 

It is well-known that regular network architectures, such as ShuffleNet, can-

not have arbitrary network size and hence modular expansion is generally diffi-

cult or impossible. In the first part of this thesis, we devise a way to expand a 

ShuffleNet modularly. The expansion procedure is based on the multi-star im-

plementation of ShuffleNet. We show how a (p, k) ShuffleNet can be expanded 

to a (p, ib + 1) ShuffleNet in modular phases. In each phase, the number of nodes 

in the network is increased by only a small fraction and hardware and software 

reconfigurations are kept to a minimum. 

In the second part of this thesis, we investigate the reconfigurability of Shuf-

fleNet in multi-star implementation. Reconfigurability is a measure of the degree 

of freedom by which a network can be reconfigured to adapt to the chang-

ing traffic patterns. If reconfigurability is 100%, the logical identities of any 
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pair of nodes can be exchanged by retiming their transceivers. In a multi-star 

network, however, we cannot always attain 100% reconfigurability. We show 

that the reconfigurability of a multi-star ShuffleNet is related to the number 

of star-couplers used and the number of wavelength channels available in each 

star-coupler. We also show that reconfigurability can be maximized a proper 

assignment of wavelength channels. Several channels assignment algorithms are 

presented and discussed. 
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Chapter 1 

Introduction 

In the past decade, optical fibers have been extensively deployed in telecommuni-

cation networks because of the huge information transmission capacity they can 

potentially provide. The low-loss region of a single-mode optical fiber (ranging 

roughly from 1.2 to 1.6 //m) provides around 30 terahertz of optical bandwidth. 

Capitalizing such transmission capacity, however, proves to be no trivial task 

because the speed of electronics cannot possibly catch up with the maximum 

bit-rate provided by an optical fiber [1]. 

Over the years researchers have been devising ways to tap the tremendous 

amount of bandwidth provide by the optical medium [2, 3, 4, 5]. A promising way 

is the Wavelength Division Multiplexing (WDM) technique. In a WDM system, 

the low-loss region of the optical fiber is divided into a number of independent 

wavelength channels. Each channel can be accessed at peak electronic processing 

speeds of, say a few Gbps. By performing multiple simultaneous transmission 

on different channels, a huge aggregate capacity can be achieved. 

Early uses of the WDM technology are confined to upgrading the capacity of 
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Chapter 1 Introduction 

point-to-point connections. Typically two, three or four additional wavelength 

channels are installed to boost the maximum bit-rate of existing optical links. 

These channels are usually separated by several tens to hundreds of nanometers 

in wavelength. With the advent of narrow linewidth lasers and narrowband op-

tical filters, wavelength channels can be spaced more closely together and hence 

the number of channels available is increased. When more channels are available, 

it is becoming more feasible to use WDM in networking applications beyond the 

sole increase of link capacity [6]. One of them is multi-access optical networks 

that interconnect a large number of nodes and provide a huge network capacity 

such that video conferencing, High Definition Television (HDTV) broadcasting, 

and other state-of-the-art multimedia applications can be supported. 

An optical network has its physical and logical topologies. The physical 

topology (e.g. star, bus or ring) describes how the network is implemented and 

the logical topology specifies how the nodes are connected and how wavelength 

channels are assigned. As an example, Figure 1.1(a) shows the logical topology 

of a 3-node network with node A transmitting to node B via channel A。，node B 

to node C via channel Ai, and so on. The physical topology of this network can 

be a single-star network as shown in Figure 1.1(b) instead of a ring. This shows 

that a logical topology can be realized by different physical implementations. 

This relative independence of logical and physical topologies gives network de-

signers the freedom to choose the most suitable logical topology for a particular 

application. 

There are basically two types of logical topologies - single-hop and multihop. 

In a single-hop network, each node can communicate with any other nodes in 

the network using an all optical path without going through any intermediate 
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Figure 1.1: A 3-node network. 

nodes. Usually every node in the network is equipped with tunable transmit-

ters or tunable receivers (or both) which are capable of accessing the entire 

spectrum of wavelength channels in use. Dynamic coordinations among nodes 

are necessary to avoid contention and receiver collision [7]. If the network is 

packet-switched, the transceivers will need to be retuned in a per-packet basis 

and so they must be very agile. Unfortunately, rapidly tunable transceivers are 

not yet commercially feasible and their tuning range is usually limited, implying 

that the number of usable channels is small. Consequently, single-hop optical 

networks are inherently limited in size. 

In a multihop network, each node is equipped with a small number of fixed 

(or slowly tunable) wavelength transmitters and receivers and is connected to 
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Chapter 1 Introduction 

a small number of nodes. Since a direct path exists only for a small set of 

node pairs, a message typically has to route through one or more intermediate 

nodes before reaching the destination. In each intermediate node, electro-optical 

conversion is required to store and forward the packets. This multihop approach 

avoids the need to retune the transmitters and/or receivers each time a packet 

is transmitted. In addition, no pre-transmission coordination is necessary. The 

price to pay is a reduced network throughput because each packet now takes a 

longer path to go from source to destination. Packets may also be dropped if an 

intermediate node becomes too congested. Nevertheless, the multihop approach 

is a viable solution when rapid tunable transceivers are not yet feasible. 

Multihop networks can have an irregular topology [8, 9, 10，11]. Irregular 

multihop networks are usually constructed by optimizing for the network traffic 

pattern. Routing in irregular networks, however, are more complicated because 

they lack any structural connectivity pattern [11]. Regular structured multihop 

networks, on the other hand, have fixed node-connectivity pattern which permit 

simplified routing schemes to be used. However, due to their regular structure, 

the number of network nodes cannot be arbitrary. This also implies that modular 

growth of network size is difficult or even impossible. Some well-known regular 

logical topologies include the perfect shuffle, the de Bruijn graph, the toroid and 

the hypercube. The corresponding networks based on these topologies are the 

ShuffleNet, the de Bruijn graph network, the Manhattan Street Network and 

the Hypercube network [11]. 

In this thesis, we concentrate on the regular multihop network called Shuf-

fleNet. ShuffleNet was first proposed in [3] and later extended in [4]. It is a 

multi-column network in which nodes in one column are connected to nodes in 
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Chapter 1 Introduction 

the next column in a perfect shuffle connection pattern. A ShuffleNet is char-

acterized by two non-zero integer parameters p and k. In a (p, k) ShuffleNet, 

the total number of nodes N is equal to kp^. They are numbered from 0 to 

kpk — 1 and are arranged in k columns of p^ nodes each, with the kth. column 

wrapped around to the first in a cylindrical fashion. The number of transmitters 

and the number of receivers per node are both equal to p. The total number of 

channels is i b p T h e location of a node in ShuffleNet can be represented by 

its {row, column) coordinates. For node n, it is readily seen that 

row = rem{n/p^) 0 < row < — 1 ( 1 . 1 ) 

column = int{n/p^) 0 < column <k-l (1.2) 

where rem{x/y) denotes the remainder of x/y and int{x/y) denotes the integer 

part of x/y. 

A (2,2) ShuffleNet is shown in Figure 1.2. Each directed link from one node 

to another represents a dedicated wavelength channel. 

In this thesis, we investigate two problematic issues associated with Shuf-

fleNet. The first one is the modular expansion of ShuffleNet. As mentioned 

above, the number of nodes iV in a ShuffleNet cannot be arbitrary [11]. Table 

1.1 shows the number of nodes N for various values oip and k. In implementing 

a ShuffleNet, we usually have to put in "dummy" nodes so that the total number 

of nodes in the network falls into this discrete set of integers. As a consequence, 

incremental growth of the network cannot be done easily. In Chapter 2 of this 

thesis, we devise a way to expand a ShuffleNet modularly. The expansion pro-

cedure is based on the multi-star realization of ShuffleNet, which is a feasible 
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Figure 1.2: A (2,2) ShuffleNet. 

way to implement a ShuffleNet. We show how a (p, k) ShuffleNet can be ex-

panded to a (p, jb + 1) ShuffleNet in several discrete phases. In each phase, a 

"partial" ShuffleNet is constructed to enable fractional growth of the network 

size. Moreover, the hardware and software reconfigurations required are kept 

to a minimum. Specifically, the hardware part involves only rearranging certain 

fiber connections and the software part involves updating node addresses and 

routing tables. No transmitter or receiver has to be added to existing nodes and 

hence disturbance to the existing network is greatly reduced. 

The second problem is less obvious and it concerns the reconfigurability of 

ShuffleNet in multi-star implementation. Reconfigurability is a measure of the 

degree of freedom by which a network can be reconfigured to suit the changing 

traffic pattern. In chapter 3, we prove that if a ShuffleNet is implemented out 

of multiple star-couplers, the network may not be able to attain the maximum 

reconfigurability of 100%. In fact, the reconfigurability of a multi-star Shuf-

fleNet is directly related to the number of star-couplers used and the number 
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Table 1.1: The number of nodes in a ShuffleNet for different values of p and k. 

_P 
k ” " " 2 3 4 5 6 7 

飞 8 1 8 ^ ^ ^ ^ 

3 24 81 192 375 648 1 ,029 

4 64 324 1 ,024 2 ,500 5 ,184 9 , 6 0 4 

5 160 1 ,215 5 ,120 15 ,625 38 ,880 8 4 , 0 3 5 
6 3 8 4 4 , 3 7 4 24 ,576 93 ,750 279 ,936 7 0 5 , 8 9 4 
7 896 15 ,3909 114 ,688 5 4 6 , 8 7 5 1 ,959 ,552 5 ,764 ,801 

of wavelength channels available in each star-coupler. We show that given a 

certain number of couplers is used, network reconfigurability can be maximized 

by an optimal assignment of wavelength channels. Several channels assignment 

algorithms for maximizing reconfigurability are presented and discussed. 
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Chapter 2 

Modular Expansion of 

ShuffleNet 

As discussed in the previous chapter, because of the regularity of the ShuffleNet 

structure, the number of nodes iV in a ShuffleNet cannot be arbitrary. It is 

therefore difficult to expand the size of a ShuffleNet modularly. 

One solution exists by observing that a (p, k) ShuffleNet is a subgraph of 

the (pH- l ,k) ShuffleNet [13]. An example is shown in Figure 2.1 where a (2,2) 

ShuffleNet (the shaded nodes and the solid arrows) is shown to be imbedded in 

a (3,2) ShuffleNet. If a target {p + 1, k) ShuffleNet is to be built but not all the 

nodes are needed for the moment, we can first deploy those nodes corresponding 

to the imbedded (p, k) ShuffleNet, and switch to the target system when necessity 

calls for. Switching from a (p, k) ShuffleNet to a (p+1, A;) ShuffleNet in one step 

causes a huge jump in network size. Moreover, the size of the target system has 

iThe materials presented in this chapter have been published in part in the Proceedings of 
IEEE GLOBECOM，93, Houston, USA, Nov. 1993; also to appear in IEEE Transactions on 
Networking, August 1994. 
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to be determined first. Further growth beyond the planned target system size 

would require a lot of hardware and software reconfigurations. 

國 
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Figure 2.1: The (2,2) ShuffleNet is a subgraph of the (3,2) ShuffleNet. 

In [14] Karol proposed a multi-connected ring implementation of ShuffleNet. 

By using a new representation of the ShuffleNet connectivity graph and a gen-

eralization of Gray code patterns, Karol showed that if a (p, k) ShuffleNet is to 

be built, we can start with k nodes connected in a ring and grow to the target 

system in several steps. In each step, k nodes connected in a ring, together with 

the necessary fiber connections, are added. Moreover, by using the fact that 

a (p, k) ShuffleNet is a subgraph of a (p + l,k) ShuffleNet, a multi-connected 

ring (p, k) ShuffleNet can be expanded to a (p + l,k) ShuffleNet in increments 

of k nodes at a time. This approach provides a way to grow a ShuffleNet grad-

ually with p. Moreover, as shown in [15], when a (p, k) ShuffleNet is grown to a 
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l^k) ShuffleNet, the total network throughput and the per-node through-

put are both increased. On the practical side, however, this expansion method 

requires a new transmitter and a new receiver to be added to all network nodes 

for each increase of p by one. New fibers also need to be laid for all these added 

transceivers. If the nodes are geographically dispersed, this expansion operation 

may be very involved and expensive. 

In this chapter we consider expanding a ShuffleNet with k instead of with p. 

We show how a (p, k) ShuffleNet can be expanded to a (p,左 + 1) ShuffleNet in 

several discrete phases. In each phase, a "partial" ShuffleNet is constructed to 

enable fractional growth of the network size. Moreover, the hardware and soft-

ware reconfigurations required are kept to a minimum. Specifically, the hardware 

part involves only rearranging certain fiber connections and the software part 

involves updating node addresses and routing tables. No transmitter or receiver 

has to be added to existing nodes and hence disturbance to the existing network 

is greatly reduced. 

This chapter is organized as follows. In Section 2.1, we describe the multi-star 

implementation of ShuffleNet and propose two channels assignment algorithms. 

In Section 2.2, we show how to expand a multi-star ShuffleNet with k in several 

phases. Section 2.3 discusses the implications of our expansion method. 

2.1 Multi-Star Implementation of ShuffleNet 

One simple way to implement a ShuffleNet is the broadcast-and-select structure 

using a single star-coupler, as shown in Figure 2.2. In such structure, each node 

is assigned one or more dedicated wavelength channels for transmission. The 
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star-coupler combines all the wavelength channels and broadcasts them to all 

the nodes. Each node then receives from the appropriate channels according 

to its logical connectivity, as defined in the ShuffleNet topology. Since all the 

nodes are connected to the same star-coupler, they can potentially be connected 

to any other nodes in the network. Therefore this single-star approach gives 

the maximal nodal reconfiguration capability, which may not be attainable in 

the multi-star approach [22]. A single-star network, however, is limited in size 

by the available power budget and by the finite number of wavelength channels 

available [6]. The power splitting loss in the star-coupler becomes significant 

when the network size is large. Since each node must be assigned dedicated 

wavelength channels, the maximum number of nodes in a network is bounded 

by the number of wavelength channels available. 

0 N^O Xq •…入N7 0 

I Passive \ X., 
• Star-coupler ^ 

N Z 八0 •…八N 、 N 

Figure 2.2: The broadcast-and-select structure. 

One way to solve this problem is the shared-channel approach [16]. Group 

of p users in each column transmit on a common channel, with a separate group 
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Chapter 2 Modular Expansion of ShuffleNet 

of p users in the next column receiving on each channel. The number of chan-

nels required to implement a (p,k) ShuffleNet is reduced from k严 to kp^'^. 

However, when multiple users are transmitting on a common channel, we must 

deal with the contention problem, which may lead to bandwidth wastage. 

An alternate way is to observe that for a multihop network, each node needs 

only be connected to a subset of the nodes. Potential connectivity for each node 

to all the other nodes in the network is not absolutely necessary. By using this 

fact, we can implement a ShuffleNet as a multi-star network. The idea is that 

by using multiple small couplers, each interconnecting a subset of the nodes, the 

available wavelength channels can be spatially reused on each coupler, hence 

increasing the number of usable channels [17, 18，19]. By adjusting the number 

of couplers to use, we can tradeoff between wavelength division multiplexing 

and space division multiplexing. When multiple couplers are used, the size 

and hence the power splitting loss of each coupler are reduced, resulting in a 

more relaxed power budget constraint. This, together with the fact that more 

channels are available, allows more network nodes to be attached. For a fixed 

required number of channels, we can space them farther apart. This can reduce 

the network cost as less expensive optical filters can be used. 

We can picture that in a real network, nodes will tend to cluster in groups and 

different groups may be geographically far apart from one another. A multi-star 

ShuffleNet is therefore likely to be implemented by co-locating the star-couplers 

in a central hub, with fiber trunks leading to each of the clusters. This is shown 

in Figure 2.3. Each fiber trunk serves one cluster and may contain more optical 

fibers than necessary for future network expansion. There are two reasons to 

co-locate the star-couplers. First, a node is connected to different star-couplers 

12 
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^ - - ^ C ； ^ ^ ^ Cluster B 

( Central Hub J 

Cluster 二 U Cluster D 

Fiber trunk 

Figure 2.3: A multi-star ShuffleNet with a central hub. 

for transmission and reception. If the star-couplers are co-located, the cost of 

laying optical fibers can be reduced. Secondly, as we shall see, during network 

expansion, we need to add new star-couplers and rearrange the fiber connections. 

If all the star-couplers are co-located in a central hub, such procedure can be 

done entirely within the hub. The effort required and disturbance to the existing 

network can be greatly reduced. 

One important objective of the implementation is to minimize the number 

of fiber connections for each node. It can be shown that a node needs only be 

connected to one star-coupler for transmission and one star-coupler for reception 

if the number of wavelength channels per fiber is no smaller than p^. To see this, 

consider an arbitrary node A in a (p, k) ShuffleNet as shown in Figure 2.4. If 
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node A is receiving from star-coupler J, the p nodes transmitting to node A must 

also be connected to star-coupler J. Since each of the p nodes requires p distinct 

wavelength channels on star-coupler J, the minimum number of wavelength 

channels required is p^. 

I 

I • p channels 

p nodes < • 
p channels [ •• A “ i P channels 

k channels 

column m 、、、 column rn+1 

Figure 2.4: Nodes in a {p,k) ShuffleNet. 

Let there be w wavelength channels available in a fiber and let these channels 

be labeled as channel 0 to channel w-\. Each column of nodes can be partitioned 

into groups of p nodes such that nodes in the same group are all connected to the 

same set of nodes in the next column [16]. In general, for any column in a (p，k) 

ShuffleNet, group i consists of nodes with the following set of row coordinates 

+ + 2 + — 1) . / - i } , where 0 < i < p " — 1. As 

an example consider the (2,2) ShuffleNet as shown in Figure 2.5. In the first 

column, group 0 consists of nodes {0, 2} and group 1 consists of nodes {1，3}. 

We can see that nodes {0, 2} are both connected to nodes {4, 5}，and nodes {1, 

3} are both connected to nodes {6, 7} in the next column. One observation is 
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that nodes belonging to the same group must transmit to the same star-coupler 

in order that nodes to which they are connected in the next column can receive 

from a single star-coupler. Since there are p nodes in each group and each node 

requires p wavelength channels, a total of p^ wavelength channels are needed 

for each group. This implies that the number of usable wavelength channels w 

must be a multiple of Here, we assume w = MjP, where M is an integer and 

1 < M 

(0,0) (0,0)【丨 (2,0) (2,0)r| 

0 ^ 4 . 0 (0.1)/ ——\ (2.1) /L_^ 

1 5 k ^ x / (2,3); 1 

3 7 . 3 
(1,3) (1,3) (3,3) (3,3) 

Figure 2.5: Channels assignment for the (2,2) ShuffleNet. 

In the following, we describe the Transmitter Channels Assignment Algo-

rithm and the Receiver Channels Assignment Algorithm. We also construct two 

formulas which express the connectivity of node n given p, k, w and N. 

In the Transmitter Channels Assignment Algorithm, each node is assigned 

p wavelength channels on a fiber that connects to a particular star-coupler. We 

divide the nodes in a column into groups and assign nodes of the same group 

to connect to the same star-coupler. We order the outgoing links of each node 

in a way such that the first link is the one that connects to the node in the 
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^ ^ ^ ^ wavelength channels ^ ^ ^ ^ 

0’1 

Figure 2.6: Multi-star implementation of the (2,2) ShuffleNet. 

next column with the smallest row coordinate, the second link is the one that 

connects to the node with the second smallest row coordinate, etc. Within a 

group, wavelength channels are assigned to links in natural order. The first 

links are assigned first, followed by the second links, third links, etc. This is 

usually referred to as the row major order assignment in matrix theory. As an 

example, Figure 2.5 shows the connectivity and channels assignment for a (2,2) 

ShuffleNet. The integer pair associated with each link represents {star-coupler, 

channel). In this example, w is equal to = 4 . We can see that in the 

first column, nodes 0 and 2 of group 0 are assigned connections to star-coupler 

0. Within group 0, channels 0 to 3 of star-coupler 0 are assigned to the four 

outgoing links in a row major fashion. Similarly, nodes 1 and 3 of group 1 are 

assigned to connect to star-coupler 1 and the four channels of star-coupler 1 

16 



Chapter 2 Modular Expansion of ShuffleNet 

are assigned to the four outgoing links accordingly. Note that if there are more 

channels available, say w is equal to 8, nodes in group 1 can also be assigned 

to star-coupler 0 for transmission with the four outgoing links being assigned to 

channels 4 to 7. This procedure is repeated for all columns of the ShuffleNet. 

In the Receiver Channels Assignment Algorithm, the corresponding set of 

receiver wavelength channels for each node is deduced directly from the con-

nectivity graph. For example, in Figure 2.5, node 4 receives from node 0 and 

node 2. Since we have already assigned channels 0 and 1 of star-coupler 0 to 

nodes 0 and 2 respectively, node 4 will receive from channel 0 and channel 1 of 

star-coupler 0. With the Transmitter Channels Assignment done, the Receiver 

Channels Assignment is only a simple labeling algorithm. 

For the formal description of the two algorithms we define the following no-

tations: For node n, let Tn be the set of transmitter wavelength channels, Rn be 

the set of receiver wavelength channels, In be the star-coupler node n transmits 

packets to and 人 be the star-coupler node n receives packets from. Using the 

following algorithms, the multi-star implementation of the (2,2) ShuffleNet is 

obtained as shown in Figure 2.6. 

Transmitter Channels Assignment Algorithm 

Inputs: p, k, w and N. 

Outputs: Tn and for 0 < n < TV - 1. 

begin 

channel := 0; coupler := 0; 

for column :== 0 to {N/p^) - 1 do 

for row := 0 to - 1 do 
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for link := 0 to p - 1 do 

for shift := 0 to p - I do 

begin 

n := column • p^ + row + shift. 

Tn ：= Tn U {channel}; 

In coupler; 

if channel < w -1 then 

channel := channel + 1 

else 

begin 

channel ：二 0; 

coupler ：二 coupler + 1； 

end; 

end] 

end. 

Receiver Channels Assignment Algorithm 

Inputs: p, k, w and N. 

Outputs: Rn and Jn for 0 < ；̂  iV — 1. 

begin 

channel := 0; coupler := 0; 

for node :== to JV + — 1 do 

begin 

n ：二 rem{node/N); 

18 
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Jn := coupler; 

for link := 0 to p-1 do 

begin 

Rn := Rn U {channel}] 

if channel < w — 1 then 

channel := channel + 1 

else 

begin 

channel := 0; 

coupler := coupler + 1; 

end; 

end; 

end; 

end. 

A closed form solution for h and Jn can be put together as follows: 

h = int [ ( r e m ( n / / - i ) + / - i — ( n / / ) ) / ( — 2 ) ] (2.1) 

J, 二 int [(n -p^-^NS [int{n/p^)])/{w/p)] (2.2) 

where S{x) 二 1 if re 二 0 and ^(x) = 0 ii x 0. To see how (2.1) and (2.2) 

come about, we break them down and analyze them term by term. Basically 

(2.1) follows closely from our previous discussions on groups and the Transmitter 

Channels Assignment Algorithm. Since there are p^ nodes per column, and each 

group consists of p nodes, p^ represents the number of groups per column. The 

expression rem(n/p知—i) gives the group to which node n belongs. If we number 

the groups in column 0 from 0 to — 1, the groups in column 1 from p " to 
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知一 1 - 1 and so on, the group to which node n belongs becomes rem{n/p^~'^) + 

pk-Hnt(n/pk) because int{n/p^) is the column coordinate of node n. Since a 

star-coupler can accommodate w/p"̂  groups, the right hand side of (2.1) gives 

the star-coupler number to which a group connects to for transmission. 

To interpret (2.2), refer to the (2,2) ShuffleNet in Figure 2.5. Starting from 

the second column, we see that both nodes 4 and 5 receive from star-coupler 

0 while both nodes 6 and 7 receive from star-coupler 1. In general, due to the 

symmetry of ShuffleNet, if we start from the first node in the second column, i.e. 

from node the first set of w/p consecutive nodes receives from star-coupler 

0, the second set receives from star-coupler 1, and so on. This is because w/p 

represents the number of nodes receiving from a particular star-coupler. Special 

treatments are required for nodes in column 0 because the receiving side of the 

column 0 nodes is at the last column. The addresses for the nodes in column 0 

must therefore be all increased by N, as indicated by the term NS . 

Note that in the above algorithms and equations, the requirement on N is 

that it be divisible by p^. Therefore, the algorithms and equations can also 

be used on partial ShuffleNets, or ShuffleNets having fewer columns than a 

corresponding full ShuffleNet, such as a (2,4) ShuffleNet with 3 columns instead 

of 4. A partial ShuffleNet is characterized by three parameters p, k and m. A (p, 

k, m) ShuffleNet is a (p, k) ShuffleNet having m columns, where I < m < k. A 

full (p, k) ShuffleNet can be denoted as a (p, k, k) ShuffleNet. The total number 

of nodes iV in a (p, k, m) ShuffleNet is equal to mp^. 
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2.2 Modular Expansion of ShuffleNet 

In this section we describe a procedure for expanding a (p, k) ShuffleNet to 

a {p,k -h 1) ShuffleNet in several phases, each using a partial ShuffleNet. In 

each phase, the increase in network size is fractional. Since the first phase of 

expansion differs considerably from the subsequent phases, it will be described 

separately. Along with the descriptions, we will cite an example of expanding 

a (2,3) ShuffleNet to a (2,4) ShuffleNet and will show how this can be done in 

3 phases. Figure 2.7 shows the logical connectivity and wavelength channels 

assignment for a (2,3) ShuffleNet using 8 wavelength channels per fiber. 

2.2.1 Expansion Phase 1 

There are three steps in the first phase of expansion. Denote the (p, k) ShuffleNet 

as Construct a partial (p, k-\-l, mo) ShuffleNet The total number of nodes 

in is moP知+1. As the size of 少e must be large enough to accommodate all 

kpk nodes in the smallest possible expansion must satisfy m o P … > In 

other words, mo 二 int{k/p) + 1. The number of new nodes added is therefore 

爪 o p f c + i 一 二 pk(jnoP — k) and the number of new star-couplers added is 

知+i(mop - k)lw. The following steps are performed in the expansion. 

1. Perform connectivity and channels assignment on using the algorithms 

in Section II. 

Remark: The connectivity and channels assignment for our example (2,4,2) 

ShuffleNet is shown in Figure 2.8. 

2. Map each node in $ to an equivalent node in cmd update the node ad-

dress accordingly. 
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Figure 2.7: Connectivity and channels assignment of a (2,3) ShuffleNet using 8 
wavelength channels per fiber. 

Remarks: Two nodes are said to be equivalent if their transmitter and 

receiver wavelengths are the same. They, however, can be connected to 

different star-couplers. For example, node 0 in the (2,3) ShuffleNet is equiv-

alent to nodes 0, 4, 16 and 20 in the (2,4,2) ShuffleNet. Our goal is to map 

all the nodes in $ to nodes in so that these "old" nodes can continue to 

communicate with the others with a mere change of addresses and some 

connection rearrangements. In other words, the expansion should require 

no replacement or retuning of any transmitters and receivers in the "old" 

nodes. There may be more than one mapping available but the mapping 
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we introduce here requires only connection rearrangements at the output 

side of the star-couplers. Specifically, a node a in 少 is mapped to a node 

P in by the following formula 

+ / - i r e m _ + / + � n t _ (2.3) 

where a = rem{a/p^) and b 二 int{a/p^). 

To understand how we come up with such a mapping let us go back to 

our example. Figures 2.9 and 2.10 show the multi-star implementation of 

the (2,3) and (2,4,2) ShuffleNets respectively. Consider the input ports 

of each star-coupler. To reduce the number of reconnect ions, the nodes 

transmitting to a particular star-coupler in Figure 2.9 should be mapped 

onto the nodes transmitting to the same star-coupler in Figure 2.10. Thus 

nodes 0, 1, 4 and 5 in Figure 2.9 should be mapped onto nodes 0, 1, 8 

and 9 in Figure 2.10 respectively. Note that nodes 0 and 1 do not even 

need to change addresses. If such a mapping is used, all the nodes can 

be "reused" with a mere change of addresses and the input ports of all 

star-couplers do not need any rearrangements. Unfortunately, this does 

not exempt us from rearranging the output ports. For instance, node 8 in 

Figure 2.9 is receiving from star-coupler 0. But when it is mapped onto 

node 4 in Figure 2.10, it has to receive from star-coupler 5. Therefore we 

must unplug the fiber connection of node 8 at star-coupler 0 and reconnect 

it to star-coupler 5. Table 2.1 shows the mapping used in our example. 

Equation (2.3) is simply a compact form of expressing this mapping. 
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Table 2.1: Mapping nodes in the (2,3) ShuffleNet to the (2,4,2) ShuffleNet. 

Original New Original New Original New 
address address address address address address 

0 0 8 4 16 16 
1 1 9 5 17 17 
2 2 10 6 18 18 

3 3 11 7 19 19 
4 8 12 12 20 2 4 
5 9 13 13 21 25 

6 10 14 14 22 26 
7 11 15 ^ 27 

3. Disconnect some output ports of the star-couplers. Add new nodes and new 

star-couplers and connect all loose-end fibers according to the connectivity 

graph of 屯e. 

Remarks: In our example, eight new nodes numbered 24 to 31 are added. 

All the input ports of the six star-couplers do not need any rearrangement. 

The output ports of the six star-couplers except star-coupler 4 are all 

unplugged and new star-couplers 6 and 7 are added together with their 

attaching fibers. Finally, all loose-end fibers are connected according to 

the connectivity requirements of the (2,4,2) ShuffleNet. By setting p, k, 

w and N to 2, 4, 8 and 32 respectively in (2.2), which star-coupler a node 

is to receive from can readily be computed and connections can be made 

accordingly. 

2.2.2 Subsequent Expansion Phases 

In each subsequent phase, a column of nodes is added to the (p, mo) 

ShuffleNet until it becomes a full (p,k-j-l) ShuffleNet. Each subsequent phase is 
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composed of three steps. In general, in phase z, the (p, mo+i—2) ShuffleNet 

is expanded to a (p, m � + i — 1) ShuffleNet, where 2 < i < k - mo + 2. 

Along with the descriptions we will expand our example (2,4,2) ShuffleNet to a 

(2,4,3) ShuffleNet. 

1. Construct a (p, k+1，mo-{-i-l) ShuffleNet and find the connectivity and 

wavelength channels assignment. 

Remark: We illustrate this by the (2,4,3) ShuffleNet shown in Figure 2.11. 

2. Disconnect the output ports of the star-couplers that lead to node 0, node 

1, ...， up to node — 1) in the ShuffleNet of the previous phase. 

Remark: In our example, the output ports of star-couplers 4 to 7, originally 

connected to nodes 0 to 15, are now disconnected. 

3. Connect a column of p糾 new nodes, p^-^^/w new star-couplers and the 

loose-end fibers to the network according to the connectivity graph of the 

+ l ,mo + z - 1) ShuffleNet 

Remarks: Since p科i nodes are added and each node requires p channels, 

1让 new star-couplers are needed. In our example, nodes 32 to 47 are 

added together with four new star-couplers numbered from 8 to 11. Nodes 

32 to 47 are connected to star-couplers 4 to 7 for reception and star-

couplers 8 to 11 for transmission. Finally, the loose-end fibers of nodes 

0 to 15 are connected to the newly added star-couplers 8 to 11. Similar 

to step 3 in expansion phase 1, (2.2) can be used to generate the list of 

connections. 
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2.3 Discussions 

The modular expansion of a (p,k) ShuffleNet to a (p,k + 1) ShuffleNet goes 

through the following list of partial ShuffleNets: (p, fc + 1，mo), (p, A; + 1, mo + 1), 

(p,k-{-l,k + 1), where mo = int(k/p) + 1. The number of growing phases 

is A; + 1 - int(k/p). In each phase of expansion, we need to rearrange fiber con-

nections and update node addresses. Updating of node addresses involves only 

software changes and can be accomplished easily with the use of the mapping 

equation (2.3). Rearranging fiber connections is also very simple with the use of 

standard fiber connectors. In addition, if the star-couplers are centrally located, 

all plugging and unplugging of standard fiber connectors can be performed at 

the network hub. If done this way, rearranging fiber connections will not be 

particularly time-consuming. 

For the multi-star implementation of a (p, k) ShuffleNet to be expandable, 

the number of wavelength channels used per fiber must be a multiple of and 

must not be larger than p^. The former part was discussed in Section II. The 

latter part is due to that fact that if more than p^ channels are used, more than 

l / p column of nodes will need to be connected to a star-coupler and a mapping 

for all the old nodes to be reused will not exist. This upper bound on w implies 

that if p is small, the number of usable channels would be small compared to the 

maximum number of channels that can potentially be supported. More couplers 

will be needed and the network cost is increased. Fortunately, if a small number 

of channels is used per fiber, these channels can be spaced farther apart so 

that less expensive transceivers can be used. On the other hand if we build a 

ShuffleNet with a large p such that more channels can be used per fiber, since p 
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represents the number of transceivers per node, the cost of transceivers will add 

to the overall network cost significantly. The best configuration will probably 

be determined by the cost of various optical devices. 

When compared to Karol's approach of expanding with p [14], expanding a 

ShuffleNet with k results in a less gradual growth. In addition, when a (p, k) 

ShuffleNet is expanded to a (p, A; + 1) ShuffleNet, the per-node throughput is 

decreased because each node now takes, on the average, a larger number of 

hops to reach the other nodes. But the advantages of expanding with k by the 

method outlined here are that no hardware change needs to be done on the 

network nodes and no new deployment of fibers are needed for existing nodes. 

Therefore whether it is more feasible to expand with p or with k depends on the 

specific application. 

We assume that fixed wavelength transceivers are used in the network nodes. 

Recently there has been quite a lot of research on what can be achieved with 

frequency-selective devices. For example, Barry and Humblet [20] have shown 

how to build Latin Routers, which provide single-hop connectivity among N 

nodes using only N wavelengths and can be constructed from small building 

blocks. Fixed wavelength devices are assumed because of its lower cost and 

better stability over wavelength agile devices. It is reasonable to anticipate 

that if wavelength agile devices are used, the hardware reconfigurations required 

in the expansion procedure may be reduced. However, such an issue involves 

designing a different set of expansion algorithms and is beyond the scope of this 

thesis. 

With the use of partial ShuffleNets in our expansion phases, routing schemes 

such as the static self-routing scheme [16] and the dynamic routing scheme [21 
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cannot be used directly. These routing schemes, however, can also be used 

on partial ShuffleNets after some minor modifications. Since some columns 

are missing in a partial ShuffleNet, each node can no longer determine which 

link a packet should be routed by manipulating its own address with the p-ary 

representation of the destination address. Additional information is therefore 

required to assist routing. In the static routing scheme, for example, each node 

should keep a table mapping every destination address to a pre-computed path. 

The pre-computed path may represent the shortest path between two nodes, 

or a path that contains no faulty nodes and links. Based on the destination 

address, the corresponding pre-computed path is stored in the header of every 

packet to indicate which link to take in each intermediate node. In the dynamic 

routing scheme, whenever a packet is deflected, the pre-computed path in the 

packet header should be updated by the local node to reflect the new route the 

packet should take. With these simple modifications, these routing schemes can 

also be applied on partial ShuffleNets. 

Table 2.2: Percentage growth in each phase of expanding a (2,3) ShuffleNet. 

Network size Percentage growth 
~ ^ 00.00% 

32 3 3 . 3 3 % 
48 5 0 . 0 0 % 
64 3 3 . 3 3 % 
96 5 0 . 0 0 % 
128 3 3 . 3 3 % 
160 2 5 . 0 0 % 
192 20.00% 
256 3 3 . 3 3 % 
320 2 5 . 0 0 % 
384 2 0 . 0 0 % 
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As an example to show the modular growth property of our algorithm, Table 

2.2 shows the percentage growth in network size when a (2,3) ShuffleNet is 

expanded to a (2,6) ShuffleNet in 10 expansion phases. 

It can be shown that by skipping intermediate phases a (p, k) ShuffleNet can 

be grown directly to a (p, + ShuffleNet without any hardware rearrangement. 

This implies a growth of more than 100% and would be too drastic for many 

applications. 
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Figure 2.8: A (2,4,2) ShuffleNet using 8 wavelength channels per fiber. 
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Figure 2.9: Multi-star implementation of the (2,3) ShuffleNet. 

I K . [ i i k ^ 

Figure 2.10: Multi-star implementation of the (2,4,2) ShuffleNet. 
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Figure 2.11: A (2,4,3) ShuffleNet using 8 wavelength channels per fiber. 
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Chapter 3 

Reconfigurability of ShuffleNet 

in Multi_Star Implementation 

If a ShuffleNet is implemented out of a single star-coupler, each node can po-

tentially be connected to any other nodes in the network. Furthermore, if all 

the nodes are equipped with tunable transceivers capable of accessing the entire 

spectrum of wavelength channels in use, the logical topology can be reconfigured 

to adapt to the changing traffic pattern [10]. Such a network is considered to 

have maximum network reconfigurability. By "maximum reconfigurability", we 

mean any node can exchange its logical position in the network with another 

node and that can be done by simply retiming their transceivers. As recon-

figuration is required only when there is a major shift in the traffic pattern, 

transceivers need only be slowly tunable. Note that during reconfiguration, we 

still have to conform to the ShuffleNet connectivity graph. In effect, we are re-

arranging the logical positions of the nodes in the ShuffleNet to obtain the best 

iThe materials presented in this chapter will appear in the Proceedings of IEEE INFO-
CO 94, Toronto，Canada, Jun. 1994. 
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nodes placement for a given traffic pattern. Several algorithms for finding the 

best nodes placement for a given traffic matrix are proposed in [23, 24]. 

On the practical side, however, the size of a single-star based system is limited 

by the available power budget and by the finite number of wavelength channels 

available [6]. To build a large local area network, the multi-star implementation 

is therefore more preferable [25]. In a multi-star network, however, we do not 

have the same degree of freedom for reconfiguration as in a single-star network. 

As we shall see, we are not free to exchange the logical positions of an arbitrary 

pair of nodes simply by retuning their transceivers because their physical con-

nections may not allow them to do so. In other words, we may only be able to 

obtain sub-optimal nodes placement for a given traffic pattern with this limited 

freedom of reconfiguration. 

In this chapter we investigate the reconfigurability issue in multi-star Shuf-

fleNets. We show how reconfigurability is affected by the number of star-couplers 

used. Finally we propose a channels assignment algorithm to maximize recon-

figurability for a given network configuration. 

3.1 Reconfigurability of ShuffleNet 

3.1.1 Definitions 

In the single-star implementation, the logical positions of an arbitrary pair of 

nodes can be exchanged by retuning their transceivers. In the multi-star imple-

mentation, however, this is not always the case. Let us first explain the concept 

of reconfigurability. In a (p, k) ShuffleNet, each node transmits to p nodes in 

the next column and receives from p nodes in the previous column. Denote 
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the set of nodes which a node transmits to as the transmit set of that node. 

Similarly denote the set of nodes which a node receives from as the receive set 

of that node. For example, the transmit set and receive set of node 0 in a (2,2) 

ShuffleNet as shown in Figure 3.1 is {4, 5} and {4, 6} respectively. Exchanging 

the logical position of a pair of nodes is a two-part procedure. In the first part, 

the transmit sets of the two nodes are exchanged and in the second part, their 

receive sets are exchanged. Two nodes form a rearrangable pair if such exchange 

procedure can be done by retiming the transceivers. We define reconfigurability 

of a network as 

. .. Total number of rearrangable pairs 
Reconfigurability — Total number of node pairs 

The reconfigurability is a measure of the degree of freedom in node place-

ments optimization. Its value lies between 0 and 1. The reconfigurability of a 

single-star network is 1. Note that the reconfigurability defined here is different 

from the definition as in [25]. In [25] reconfigurability is defined as "the number 

of nodes which can potentially be accessed by each node in a physical topol-

o g y . " However, in a multi-star ShuffleNet, even if each node can potentially 

access all the other nodes in the network, we still cannot guarantee that the 

logical identities of any pair of nodes can be exchanged by retiming. 

3.1.2 Rearrangable Conditions 

Here, we consider only symmetric multi-star ShuffleNets. In a symmetric multi-

star ShuffleNet, the star-couplers used are of identical size and each star has 

the same number of input and output ports. Moreover, the same number of 
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Figure 3.1: Channels assignment for a (2,2) ShuffleNet. 

channels is used on each coupler. In such a network, at least one of the three 

conditions below must be satisfied before two nodes can become a rearrangable 

pair: 

(a) Their transmit sets are the same and they receive from the same set of 

star-couplers; or 

(b) Their receive sets are the same and they transmit to the same set of 

star-couplers; or 

(c) They transmit to the same set of star-couplers and receive from the same 

set of star-couplers. The two sets may be different. 

To explain the three conditions, we need to make use of 2 important obser-

vations: 

(i) To exchange the transmit sets of two nodes just by retiming, the two 

nodes must transmit to the same set of star-couplers; and 

(ii) To exchange the receive sets of two nodes just by retuning, the two nodes 

must receive from the same set of star-couplers. 
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Let us illustrate (i) by means of an example; (ii) follows by the same principle. 

Consider the (2,2) ShuffleNet as shown in Figure 3.1. The integer pair associated 

with each link represents (star-coupler, channel). In this example we assume that 

there are 4 star-couplers, each with 4 channels. We assume that there is only 1 

transmitter or receiver associated with each fiber. In other words, we exclude 

the possibility that more than 1 transmitter or more than 1 receiver is connected 

to a fiber. 

Consider nodes 0 and 3 in Figure 3.1. The transmit sets for nodes 0 and 3 

are {4, 5} and {6, 7} respectively. Node 0 transmits to nodes 4 and 5 through 

star-couplers 0 and 1 respectively and node 3 transmits to nodes 6 and 7 through 

star-couplers 2 and 3 respectively. To exchange their transmit sets, node 0 must 

be able to transmit to nodes 6 and 7 through star-couplers 0 and 1. But such con-

nections are not possible because the respective connections from star-couplers 

0 and 1 to nodes 6 and 7 have already been occupied by node 1. Similarly node 

3 cannot take up the transmit set of node 0 because the connections through 

star-couplers 2 and 3 to nodes 4 and 5 have already been occupied by node 2. 

There is no way for nodes 0 and 3 to exchange their transmit sets simply by 

retiming. For nodes 0 and 1, however, this is not the case. Both nodes 0 and 1 

transmit through star-couplers 0 and 1 to their respective transmit sets, which 

are {4, 5} and {6, 7} respectively. Node 0 uses channel 0 while node 1 uses 

channel 1 in both stars. To exchange their transmit sets, we only need to tune 

the transmitters of node 0 to channel 1 and the transmitters of node 1 to channel 

0. This exchange operation does not incur any conflict in fiber usage because 

the two nodes are just swapping their wavelength channels. As long as a pair of 

nodes are transmitting to or receiving from the same set of star-couplers, their 
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transmit sets or receive sets can be exchanged by swapping their wavelength 

channels. 

Using observations (i) and (ii), we can derive conditions (a), (b) and (c) 

easily. As stated, to exchange the identities of 2 nodes, we need to swap their 

transmit sets and receive sets. If two nodes have identical transmit sets and they 

receive from the same set of couplers, we only need to swap their receive sets 

and that can be done by retuning. Hence condition (a) is sufficient. Similarly 

if two nodes have identical receive sets and they transmit to the same set of 

couplers, we only need to swap their transmit sets and that can be done by 

retuning. Therefore condition (b) is also sufficient. Lastly if the two nodes do 

not have identical transmit sets or receive sets, but they transmit to the same 

set of couplers and receive from the same set of couplers, their transmit sets 

and receive sets can still be swapped by retuning. This is condition (c). Note 

that due to the structure of ShuffleNet, a pair of nodes cannot have the same 

transmit and receive sets. 

3.1.3 Formal Representation 

To represent the three conditions formally, let 0 be the set of nodes in the 

ShuffleNet and define: 

Nts 二 { ( 工 e xil ： X <y, the transmit sets of x and y are equal} (3.1) 

In other words, Nts is a set of node pairs in which the nodes in each pair 

have identical transmit sets. The condition a: < ^ is used to remove duplicated 

node pairs because we consider the pair {x, y) to be equivalent to the p a i r � y , x). 
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Similarly define: 

Nrs = {(a;, y) e n X ft : X < y^ the receive sets of 

X and y are equal} (3-2) 

Tsc 二 {(x, y) € n xO, : X < y^ x and y transmit to 

the same set of couplers} (3.3) 

Rsc = {(x, y) e Q X Q : X < y, x and y receive from 

the same set of couplers} (3.4) 

Z = {(x, y) e Q X 9, : X < y, x and y form a rearrangahle pazr}(3.5) 

Using the above notations, we can combine conditions (a), (b) and (c) and 

rewrite Z in (3.5) as 

Z 二 队 n Rsc) u { N r s n Tsc) u {Tsc n Rsc) (3.6) 

The number of rearrangahle pairs is therefore equal to | Z |, where the | . 

operator denotes the number of elements in set Z. As an example, for the (2,2) 

ShuffleNet with the channels assignment as shown in Figure 3.1, ^u = {(0,2), 

(1.3), (4,6), (5,7)}, NTS 二 {(0,1), (2,3), (4,5), (6,7)}，T,, 二{(0,1)，（0,4)，（0,5), 

(1.4), (1,5), (4,5), (2,3), (2,6), (2,7), (3,6), (3,7), (6,7)}, and R^c 二 {(0,2), (0,4), 

(0,6), (2,4), (2,6), (4,6), (1,3), (1,5)，（1,7), (3,5), (3,7), (5,7)}. Therefore Z = 

{(0,1)，(0,2), (0,4), (1,3), (1,5), (2,3), (2,6)，(3,7), (4,5), (4,6), (5,7), (6,7)}. The 

number of r e a r r angah l e pairs, | Z |, is 12. Reconfigurability of the network is 

therefore equal to 
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. .. Total number of rearrangable pairs 
Recon fiqurability = ^ , , ; z ； ： 

Total number of node pairs 

= S = l = 僅 

3.2 Maximizing Network Reconfigurability 

The reconfigurability of a ShuffleNet depends on its physical implementation. 

For a given configuration, however, network reconfigurability can be maximized 

by proper channels assignment. 

In theory the best channels assignment which gives the maximum reconfig-

urability can be found by exhaustive search. In practice, however, such exhaus-

tive search will be very costly even for the smallest ShuffleNet. For example, 

suppose we want to find the best channels assignment for the 4-star implementa-

tion of a (2,2) ShuffleNet. There are a total of 16 links and we need to assign each 

link to a channel on one of the four star-couplers. Since we are only interested in 

which star-coupler a link is assigned to, not the specific wavelength channel used, 
. / 16 \ 

the number of combinations is given by the multinomial coefficient • 
\ 4 4 4 4 

In addition, the 4 star-couplers are indistinguishable. The total number of trials 
/ _ \ 16 ^ 

needed in an exhaustive search is equal to x p 二 2,627,625. As 
\ 4 4 4 4 

the size of the ShuffleNet increases, this figure increases exponentially and the 

method of exhaustive search becomes impractical. 

We can maximize network reconfigurability by maximizing Z. From (3.6), we 

can see that maximizing Z is equivalent to maximizing Nts H Rsc, Nrs H Tsc and 

T s c n Rsc simultaneously. For a given ShuffleNet, Nts and Nrs are fixed, but Tsc 
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and Rsc depend on the channels assignment. We therefore want to find a "good" 

channels assignment so that Z is maximized. In the following, we show how we 

can construct such a "good" channels assignment algorithm step-by-step. 

3.2.1 Rules to maximize Tsc and Rsc 

Here we first derive two rules to maximize Tsc and Rsc The two rules will be used 

to construct a channels assignment algorithm which maximizes reconfigurability. 

The two rules are: 

Rule 1. To maximize Tsc, connect the p outgoing links of each node to p 

different star-couplers. 

Rule 2. To maximize Rsc, connect the p incoming links of each node to p 

different star-couplers. 

A A • 

0 0 ^ 
A 

A A 

1 ^ 1 
~ B ^ A 

A B • 

2 I 2 I 
B 

A B _ 

3 I 3 I 
— B 

(a) (b) 

Figure 3.2: Rule 1. 
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The idea behind rule 1 and rule 2 is very simple. Let us explain rule 1 

using a simple example. Suppose we want to assign 8 outgoing links of 4 nodes 

to 2 couplers. To maximize Tsc, we should maximize the number of nodes 

transmitting to the same set of couplers. Among other possible alternatives, 

we can either assign the 2 links of each node to different couplers, as shown in 

Figure 3.2a, or we can assign them to the same coupler, as shown in Figure 3.2b. 

We can easily see that the channels assignment in Figure 3.2a is the best in term 

of maximizing Tsc. Rule rule 2 can be explained similarly. 

3.2.2 Rules to Maximize Z 

In the following, we derive 3 additional rules which are used to construct the 

channels assignment algorithm. The 3 rules below are derived from conditions 

(a), (b) and (c) respectively and are targeted to maximize Nrs A Tsc, Nts A Rsc 

and Tsc A Rsc. 

Rule 3. To maximize Nrs ̂  Tsc： Apply rule 1 to maximize Tsc and assign the 

node pairs in Nrs to transmit to the same set of couplers. 

Rule 4. To maximize Nts^Rsc'- Apply rule 2 to maximize Rsc and assign the 

node pairs in Nts to receive from the same set of couplers. 

Rule 5. To maximize Tsc A Rsc: Apply rule 1 and rule 2 to maximize Tsc and 

Rsc respectively and take advantage of the structural properties of ShuffleNet to 

maximize Tsc 门 Rsc. 

Basically rule 3 aims at constructing a Tsc with maximal overlapping with 

In the extreme case, Tsc should be made identical to N " . However, this may 

not be possible because of the constraints imposed by the system parameters 

such as the number of wavelength channels available per coupler. The best we 
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can do is to maximize Tsc using rule 1 and enlarge the overlapping of Nrs and Tsc 

as much as possible. By assigning the node pairs in Nrs to transmit to the same 

set of couplers, we are making as many node pairs as possible in Nrs to appear 

in Tsc, thus maximizing Nrs A The explanation for rule 4 is very similar to 

that of rule 3. For rule 5, the explanation is not that strict forward. Maximizing 

Tsc n Rsc is more tricky because merely maximizing Tsc and Rsc independently 

do not guarantee a maximal Tsc Ci Rsc As we will soon see, we need to maximize 

Tsc n Rsc based on the structural properties of ShuffleNet and on the number of 

channels available per star-coupler. 

3.3 Channels Assignment Algorithms 

Let there be w channels available in each coupler and let C be the number of 

couplers used. Since kp拟 channels are needed to implement a (p, k) ShuffleNet, 

C 二 hp^^^Iw. We assume that is divisible by w. 

The parameters w and C determines the reconfigurability of a multi-star 

ShuffleNet. In general, w being a factor of kp…is the sole requirement for a 

multi-star Implementation. However, certain values of w can give a relatively 

higher reconfigurability. A plot of reconfigurability versus w will show that local 

maximums appear at points where: {[) w = p ; (ii) w = p-k; and (iii) w = 

where M is an integer. The reason is that these values of w match the regular 

structure of ShuffleNet and give a large TscnRsc. In this paper, we will construct 

channels assignment algorithms for this three cases of w. 

The channels assignment algorithms we are going to present make use of two 

unique features of ShuffleNet: 
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Fl. If we divide the nodes in a column sequentially into p groups, the member 

nodes of each group have identical receive sets. 

F2. The outgoing links in the first group of a column determines the first 

incoming links of every node in the next column, while the outgoing links in the 

second group determines the second incoming links of every node in the next 

column, and so on. 

——I® ——I® —— 

3 • 7 ^ 3 
——[© ① — — ' © © — — 

Figure 3.3: An example (2,2) ShuffleNet. 

We can explain Fl and F2 easily by an example. A (2,2) ShuffleNet is shown 

in Figure 3.3. Each link is marked with a number in circle. We can divide the 

nodes in the each column into p=2 groups. For example, in the second column, 

nodes 4 and 5 belong to one group while nodes 6 and 7 belong to the other. We 

can easily see that the receive sets of nodes 4 and 5 are the same and the receive 

sets of nodes 6 and 7 are also the same. This explains Fl. For F2, consider the 

outgoing links of nodes 4 and 5, which are links 8, 9, 10 and 11. The 4 links 

constitute the first incoming links of the 4 nodes in the next column. Similarly 
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the 4 outgoing links of nodes 6 and 7 constitute the second incoming links of 

the 4 nodes in the next column. 

In the following we construct a channels assignment algorithm for each of the 

three cases of w. The channels assignment algorithms assign the star-couplers 

and wavelength channels to the outgoing links only. Because of the regular 

structure of ShuffleNet, the wavelength channels of the incoming links of each 

node can be found by a simple labeling algorithm [26]. 

3.3.1 Channels Assignment Algorithm fov w — p 

This is the simplest case. By rule 3 and Fl, we assign nodes of a group to 

transmit to the same set of couplers. By rule 1, the p outgoing links of each 

node are assigned to different couplers. It can be shown that due to the shuffle 

connection pattern and the fact that the same couplers assignment pattern is 

applied to every node within a group, rule 4 is automatically satisfied once rule 3 

is satisfied. Since there are only p channels available in each coupler, we cannot 

further increase the reconfigurability using rule 5. 

An example channels assignment is shown in Figure 3.4. We can see from 

the figure that once we have assigned nodes of a group (e.g. nodes 0 and 1) 

to transmit to the same set of couplers, nodes which have the same transmit 

sets (e.g. nodes 4 and 6) are automatically assigned to receive from the same 

set of couplers. The formal description of the algorithm is given below. The 

algorithm outputs a 2-dimensional array network[ ] which contains the channels 

assignment. 

Channels Assignment Algorithm for w = p 

Inputs: p, k and w. 
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Outputs: channels assignment array network[]. 

begin 

channel := 0; coupler := 0; 

for node := 0 to do 

begin 
for link .•二 0 to p — 1 do 

network [node，link] := {coupler + link, channel); 

if channel = w — 1 

begin 

channel := 0; 

coupler := coupler + p; 

end 

else 

channel := channel + 1; 

end; 

end. 

3.3.2 Channels Assignment Algorithm foYw=p.k 

The case where w = p . k is similar to the case of w = p except that with 

additional channels available on each coupler, we can apply rule 5 to further 

increase the size of Tsc n Rsc and hence increasing Z. To apply rule 5, the idea is 

to make the assignment of couplers to the outgoing links in a column be identical 

for all columns, such as the channels assignment for a (3,2) ShuffleNet as shown 

in Figure 3.5. In Figure 3.5, we can see that the couplers assignment to the links 

in the first column is identical to that in the second column. Since w = p • k 

46 



Chapter 3 Reconfigurability of ShuffleNet in Multi-Star Implementation 

( 0 , 0 ) ( 0 , 0 ) I ( 4 , 0 ) ( 4 , 0 ) I 

2 \ 6 Ko) 2 

3 7 • 3 
(3,1) (3,1) L _ _ (7,1) (7,1) 

Figure 3.4: Channels assignment for a (2,2) ShuffleNet using 2 channels per 
coupler. 

and there are k columns in the network, each coupler can provide p channels for 

each column. Therefore, similar to the case oi w = p , rule 3 and rule 4 can be 

satisfied. In addition, since the couplers assignment for every column are the 

same, nodes along the same row in the ShuffleNet connectivity graph will have 

equal transmit sets and receive sets, which implies that they are rearrangable. 

For example, in Figure 3.5, nodes 0 and 9 are rearrangable because they both 

transmit to the same set of couplers (i.e. 0, 1 and 2) and receive from the same 

set of couplers (i.e. 0, 3 and 6). It can be shown that if we do not have identical 

couplers assignment for each column, the reconfigurability will be reduced. The 

formal description of the channels assignment algorithm is given as follows: 

Channels Assignment Algorithm for w = p - k 

Inputs: p, k and w. 

Outputs: channels assignment array network[. 

begin 
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channel := 0 ; coupler := 0 ; current-channel := —p; 

node := 0 ; 

while {node < kp^) do 

begin 

if rem (node, p^) 二 0 

begin 

cur rent-channel ：二 cur rent-channel + p; 

channel := current-channel; 

coupler := 0; 

end; 

for link 0 to p - I do 

network[node, link] := {coupler + link, channel); 

if channel 二 cur rent-channel + p - 1; 

begin 

channel ：二 current-channel 

coupler ：二 coupler + p] 

end 

else 

channel ：二 channel + 1; 

node := node + 1; 

end; 

end. 
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( 0 , 0 ) J ( 0 . 3 ) J 

_ 

Figure 3.5: Channels assignment for a (3,2) ShuffleNet using 6 channels per 
coupler. 

3.3.3 Channels Assignment Algorithm for w = M/ 

With additional channels available from each coupler, we can further increase Z 

by applying rule 5. The idea is to assign all the nodes in a column to transmit to 

the same set of couplers so that the nodes in the next column will all receive from 

the same set of couplers. To achieve that, a total of p couplers are used in each 

column, each providing p^ channels. In addition, a "round robin" assignment 
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method is introduced. In such method, a particular couplers assignment pattern 

is applied to consecutive links of the nodes within a group. From one group 

to the next, the pattern is shifted to the left by 1 position. By using this 

method, we can guarantee that the nodes in the next column all receive from 

that same set of couplers. Since they are also made to transmit to the same set 

of couplers (although that may be a different set), any pair of nodes within a 

column will become rearrangable. The same procedure is applied to all columns 

in the network. Let us illustrated this by using an example ShuffleNet as shown 

in Figure 3.6. In the first column, the 2 outgoing links of nodes 0 and 1 are 

assigned in the order of couplers 0 and 1. As a result, the first incoming links 

of nodes 4 to 7 are assigned to couplers 0, 1, 0, and 1 respectively. If we assign 

the 2 outgoing links of nodes 2 and 3 in the order of couplers 1 and 0, which is 

a shifted version, the second incoming links of nodes 4 to 7 will be assigned to 

couplers 1, 0, 1, and 0 respectively. Nodes 4 to 7 will then receive from the same 

set of couplers. This method is in fact based on feature F2 described previously. 

If a total of p couplers are used in the whole network, each coupler will provide 

kpk channels. In that case, the couplers assignment of every column will be 

identical, implying that every node will transmit to and receive from exactly the 

same set of couplers. A 100% reconfigurability will be attained. 

The formal description of the algorithm is given below. The function rem(x,y) 

denotes the remainder of x/y. 

The "Round Robin" Channels Assignment Algorithm for w = M / 

Inputs: p, k and w. 

Outputs: channels assignment array network[:. 

begin 
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for column := 0 to k — 1 do 

for group := 0 to p — 1 do 

for shift ;— 0 to - 1 do 

begin 

offset := rem (column, k/M) X p; 

cur rent-coupler := rem{column^ k/M) X p + group; 

if (M <> I) then 

current-channel ：二 (column/M) X p知 + group X + shift 

else 

current-channel := rem{{group X + shift),p^); 

coupler ：二 cur rent-Coupler] 

channel := cur rent-channel ； 

node 二 column X + group X + shift] 

for link := 0 to p - 1 do 
network[node, link] := {rem{coupler + link) + p, channel)] 

end; 

end. 

3.4 Discussions 

The use of multiple star-couplers is inevitable during implementation if the net-

work size is large. The multi-star implementation enables a reduced complexity 

of each individual coupler and relaxes the power budget constraint, thereby in-

creasing the number of nodes that can be accommodated. The price to pay is a 

reduced network reconfigurability. 
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\ j m ( 0 . 0 ) I ( 0 . 4 ) ( 0 , 4 ) 一 I 

2 \ ， 6 (06) \ ^ 2 

3 7 3 
(0,3) (0,3) L _ _ (0,7) (0,7) 

Figure 3.6: The "Round Robin" assignment method. 

The reconfigurability of a network is a measure of the degree of freedom 

one can reconfigure the network in respond to the change of network traffic 

patterns. If reconfigurability is equal to 1，we can freely exchange the logical 
i 

positions of an arbitrary pair of nodes just by retiming their transceivers. There 

are different choices of node pairs to be exchanged. One possibility is that we 

may exchange the logical positions of a pair of nodes so that those "busy" nodes 

are logically closer to each other and so packets can take fewer hops to reach their 

destinations. This can reduce the weighted mean hop count of the network [23 . 

If we do not have a reconfigurability of 1, we can only settle for a sub-optimal 

network configuration. It is obvious that we need to trade off reconfigurability 

against the advantages of the multi-star implementation. 

We found that to implement a (p, k) ShuffleNet, if we use p star-couplers (i.e. 

w = kpk), we can still attain the maximum reconfigurability while enjoying the 

advantages of a multi-star network. The reason is that if p couplers are used, 
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the number of channels available on each coupler must be kp^'^'^/p 二 kp^, which 

is a multiple of p知.In each column, p^ channels are needed from each coupler. 

We can therefore assign the whole column of nodes to transmit to the set of 

p couplers. Moreover, all the nodes in the next column will also receive from 

exactly the same set of couplers. Since there are k columns, and the number of 

channels available per coupler is we can assign the nodes in every column to 

transmit to the same set of couplers. In other words, all the nodes in the network 

will transmit to and receive from the same set of couplers. Any arbitrary pair 

of nodes can be rearrangable, which leads to maximal reconfigurability. 

One point worth mentioning is that under the condition of limited recon-

figurability, even if we have exchanged the logical identities of two nodes, their 

physical identities remain the same because their physical identities are already 

fixed during implementation. 

It is observed that the node placement optimization algorithms proposed for 

single-star ShuffleNet in [23] may work for the multi-star case as well. However, 

it is not possible to obtain a sub-optimal node placement strategy when the 

reconfigurability is less than 1. 

To implement a {p,k) ShuffleNet, the best configuration is to use p star-

couplers, each with kp^ wavelength channels. In this way, we can take advantage 

of the multi-star implementation while maintaining a 100% reconfigurability. As 

an example, Table 3.1 shows the reconfigurability for different values of w and 

C in the multi-star implementation of a (3,2) ShuffleNet. We can see from the 

table that if we use 3 star-couplers in the implementation, we can attain the 

maximum reconfigurability of 1. 
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Table 3.1: Reconfigurability of the (3,2) ShuffleNet in multi-star implementation 
for various values of w and C. 

w C Reconfigurability 
~ 3 1 8 0 .2353 

6 9 0 .2941 
9 6 0 .4706 

18 3 1 .0000 

54 



Chapter 4 

Conclusions 

In this thesis we have investigated two important issues of ShuffleNet, namely 

modular expansion of network size and reconfigurability in multi-star implemen-

tation. 

We discuss in Chapter 2 that modular expansion of ShuffleNet is difficult 

because of the regularity of the ShuffleNet structure. Since it is not possible 

to separate an expansion procedure from its physical implementation, we first 

develop a multi-star implementation method for ShuffleNet. The multi-star im-

plementation method is especially suitable for large networks because the limited 

available wavelength channels are spatially reused across different star-couplers. 

Based on this multi-star implementation, an expansion algorithm is proposed 

which enables modular growth of ShuffleNets. The expansion algorithm ex-

pands a (p, k) ShuffleNet to a (p，A: + 1) ShuffleNet in several discrete phases. In 

each expansion phase, the increase in network size is only fractional. Hardware 

and software reconfigurations are kept to a minimum and they involve rearrang-

ing fiber connections and updating node addresses and routing tables. Since the 
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star-couplers are likely to be centrally located, the expansion procedure is not 

particularly time-consuming and will not cause much disturbance to existing 

nodes except for the network down-time during reconfiguration. 

In Chapter 3, we have investigated the reconfigurability of ShuffleNet in the 

multi-star implementation. We show how reconfigurability is related with w, the 

number of channels available per coupler, and C, the number of couplers used. 

Based on a set of observations and rules, we propose three Channels Assign-

ment Algorithms for different values of w to maximize reconfigurability under 

a particular implementation. We found that to implement a (p, k) ShuffleNet, 

the best configuration is to use p star-couplers, each with kp^ wavelength chan-

nels. In this way, we can take advantage of the multi-star implementation while 

maintaining a 100% reconfigurability. 

Finally, some related directions for further research are outlined in the fol-

lowing. The expansion procedure developed in this thesis expands a ShuffleNet 

with the parameter k while the one proposed by Karol in [14] expands with 

the parameter p. Both methods have their pros and cons, as discussed in the 

previous chapters. It would be worthwhile to derive an expansion algorithm by 

combining the two algorithms. The combined algorithm should allow expansion 

with either parameter and possess the advantages of the original ones. Secondly, 

although the problems studied in this thesis are targeted for ShuffleNets only, 

similar problems exist in other regular structure multihop networks. Results 

and insights obtained in this thesis can possibly be extended to other regular 

multihop networks. 
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