259 research outputs found

    Optic cup and optic disc segmentation using improved selfish gene algorithm / Norharyati Md Ariff

    Get PDF
    Glaucoma is a disease that is defined by the pressure increased with the eyeball, causing severe damage to the optic nerve. One of the symptoms in glaucoma disease detection is an increased fluid pressure, which in the long term will damage the eye's optic nerve and it may in the worst case lead to blindness. Blindness due to optic nerve damage is irreversible unless it is intervened with proper treatment. In view of this, eye screening is important for early detection. Currently, the very important indicator for accessing the progression of glaucoma is the cup-to-disc ratio (CDR). Due to the complexity of Cup to Disc Ratio (CDR) measurement where the visibility of the boundary between optic cup and optic disc with high density vascular in the optic region, this research explores the methods that can detect the optic cup and optic disc by using digital fundus image as a cheaper solution for an eye screening. Image processing techniques were employed to segment and extract the optic cup and optic disc for glaucoma detection purpose. This study performed using a new bio-inspired algorithm; Selfish Gene Algorithm (SFGA) for optic cup and optic disc segmentation. In addition, this new algorithm is compared to color channel multi-thresholding segmentation and artificial intelligence segmentation based clustering method such as Adaptive Neuro-Fuzzy Inference System (ANFIS) and Fuzzy cMeans (FCM). From the results and analysis obtained from this research, it is established that improved SFGA is outperformed ANFIS, FCM, and Color Channel Multi-thresholding. Therefore, SFGA has potential to greatly improve outcomes for the current technology

    DETECTION AND SEGMENTATION OF OPTIC DISC IN FUNDUS IMAGES

    Get PDF
    Objective: Image processing technique is utilized in the medical field widely nowadays. Hence, therefore, this technique is used to extract the different features like blood vessels, optic disk, macula, fovea etc. automatically of the retinal image of eye.Methods: This paper presents a simple and fast algorithm using Mathematical Morphology to find the fovea of fundus retinal image. The image for analysis is obtained from the DRIVE database. Also, this paper is enhanced to detect the Diabetic Retinopathy disease occurring in the eye.Results: Detection of optic disc boundary becomes important for the diagnosis of glaucoma. The iterative curve evolution was stopped at the image boundaries where the energy was minimum.Conclusion: The changes in the shape and size of the optic disc can be used to detect glaucoma and also cup ratio can be used as a measure of glaucoma

    Glaucoma Detection from Color Fundus Images

    Get PDF
    Glaucoma is a pathological condition, progressive neurodegeneration of the optic nerve, which causes vision loss. The damage to the optic nerve occurs due to the increase in pressure within the eye. Glaucoma is evaluated by monitoring intra ocular pressure (IOP), visual field and the optic disc appearance (cup-to-disc ratio). Cup-to disc ratio (CDR) is normally a time invariant feature. Therefore, it is one of the most accepted indicator of this disease and the disease progression. In this paper, active contour method is used to find the CDR from the color fundus images to determine pathological process of glaucoma. The method is applied on 25 nos of color fundus images obtained from optic disc organization UK having normal and pathological images. The proposed technique able to categorize all the glaucoma disease images

    Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review

    Get PDF
    Glaucoma is a group of eye diseases that have common traits such as, high eye pressure, damage to the Optic Nerve Head and gradual vision loss. It affects peripheral vision and eventually leads to blindness if left untreated. The current common methods of pre-diagnosis of Glaucoma include measurement of Intra-Ocular Pressure (IOP) using Tonometer, Pachymetry, Gonioscopy; which are performed manually by the clinicians. These tests are usually followed by Optic Nerve Head (ONH) Appearance examination for the confirmed diagnosis of Glaucoma. The diagnoses require regular monitoring, which is costly and time consuming. The accuracy and reliability of diagnosis is limited by the domain knowledge of different ophthalmologists. Therefore automatic diagnosis of Glaucoma attracts a lot of attention.This paper surveys the state-of-the-art of automatic extraction of anatomical features from retinal images to assist early diagnosis of the Glaucoma. We have conducted critical evaluation of the existing automatic extraction methods based on features including Optic Cup to Disc Ratio (CDR), Retinal Nerve Fibre Layer (RNFL), Peripapillary Atrophy (PPA), Neuroretinal Rim Notching, Vasculature Shift, etc., which adds value on efficient feature extraction related to Glaucoma diagnosis. © 2013 Elsevier Ltd
    • …
    corecore