50 research outputs found

    Asymptotic Optimality of Myopic Ranking and Selection Procedures

    Full text link
    Ranking and selection (R&S) is a popular model for studying discrete-event dynamic systems. It aims to select the best design (the design with the largest mean performance) from a finite set, where the mean of each design is unknown and has to be learned by samples. Great research efforts have been devoted to this problem in the literature for developing procedures with superior empirical performance and showing their optimality. In these efforts, myopic procedures were popular. They select the best design using a 'naive' mechanism of iteratively and myopically improving an approximation of the objective measure. Although they are based on simple heuristics and lack theoretical support, they turned out highly effective, and often achieved competitive empirical performance compared to procedures that were proposed later and shown to be asymptotically optimal. In this paper, we theoretically analyze these myopic procedures and prove that they also satisfy the optimality conditions of R&S, just like some other popular R&S methods. It explains the good performance of myopic procedures in various numerical tests, and provides good insight into the structure and theoretical development of efficient R&S procedures

    Selecting the best stochastic systems for large scale engineering problems

    Get PDF
    Selecting a subset of the best solutions among large-scale problems is an important area of research. When the alternative solutions are stochastic in nature, then it puts more burden on the problem. The objective of this paper is to select a set that is likely to contain the actual best solutions with high probability. If the selected set contains all the best solutions, then the selection is denoted as correct selection. We are interested in maximizing the probability of this selection; P(CS). In many cases, the available computation budget for simulating the solution set in order to maximize P(CS) is limited. Therefore, instead of distributing these computational efforts equally likely among the alternatives, the optimal computing budget allocation (OCBA) procedure came to put more effort on the solutions that have more impact on the selected set. In this paper, we derive formulas of how to distribute the available budget asymptotically to find the approximation of P(CS). We then present a procedure that uses OCBA with the ordinal optimization (OO) in order to select the set of best solutions. The properties and performance of the proposed procedure are illustrated through a numerical example. Overall results indicate that the procedure is able to select a subset of the best systems with high probability of correct selection using small number of simulation samples under different parameter settings

    Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms

    Full text link
    Ordinal optimization (OO) is a widely-studied technique for optimizing discrete-event dynamic systems (DEDS). It evaluates the performance of the system designs in a finite set by sampling and aims to correctly make ordinal comparison of the designs. A well-known method in OO is the optimal computing budget allocation (OCBA). It builds the optimality conditions for the number of samples allocated to each design, and the sample allocation that satisfies the optimality conditions is shown to asymptotically maximize the probability of correct selection for the best design. In this paper, we investigate two popular OCBA algorithms. With known variances for samples of each design, we characterize their convergence rates with respect to different performance measures. We first demonstrate that the two OCBA algorithms achieve the optimal convergence rate under measures of probability of correct selection and expected opportunity cost. It fills the void of convergence analysis for OCBA algorithms. Next, we extend our analysis to the measure of cumulative regret, a main measure studied in the field of machine learning. We show that with minor modification, the two OCBA algorithms can reach the optimal convergence rate under cumulative regret. It indicates the potential of broader use of algorithms designed based on the OCBA optimality conditions

    Finite Simulation Budget Allocation for Ranking and Selection

    Full text link
    We consider a simulation-based ranking and selection (R&S) problem under a fixed budget setting. Existing budget allocation procedures focus either on asymptotic optimality or on one-step-ahead allocation efficiency. Neither of them depends on the fixed simulation budget, the ignorance of which could lead to an inefficient allocation, especially when the simulation budget is finite. In light of this, we develop a finite-budget allocation rule that is adaptive to the simulation budget. Theoretical results show that the budget allocation strategies are distinctively different between a finite budget and a sufficiently large budget. Our proposed allocation rule can dynamically determine the ratio of budget allocated to designs according to different simulation budget and is optimal when the simulation budget goes to infinity, indicating it not only possesses desirable finite-budget properties but also achieves asymptotic optimality. Based on the proposed allocation rule, two efficient finite simulation budget allocation algorithms are developed. In the numerical experiments, we use both synthetic examples and a case study to show the superior efficiency of our proposed allocation rule
    corecore