423 research outputs found

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Distributed spectrum leasing via cooperation

    Get PDF
    “Cognitive radio” networks enable the coexistence of primary (licensed) and secondary (unlicensed) terminals. Conventional frameworks, namely commons and property-rights models, while being promising in certain aspects, appear to have significant drawbacks for implementation of large-scale distributed cognitive radio networks, due to the technological and theoretical limits on the ability of secondary activity to perform effective spectrum sensing and on the stringent constraints on protocols and architectures. To address the problems highlighted above, the framework of distributed spectrum leasing via cross-layer cooperation (DiSC) has been recently proposed as a basic mechanism to guide the design of decentralized cognitive radio networks. According to this framework, each primary terminal can ”lease” a transmission opportunity to a local secondary terminal in exchange for cooperation (relaying) as long as secondary quality-of-service (QoS) requirements are satisfied. The dissertation starts by investigating the performance bounds from an information-theoretical standpoint by focusing on the scenario of a single primary user and multiple secondary users with private messages. Achievable rate regions are derived for discrete memoryless and Gaussian models by considering Decode-and-Forward (DF), with both standard and parity-forwarding techniques, and Compress-and-Forward (CF), along with superposition coding at the secondary nodes. Then a framework is proposed that extends the analysis to multiple primary users and multiple secondary users by leveraging the concept of Generalized Nash Equilibrium. Accordingly, multiple primary users, each owning its own spectral resource, compete for the cooperation of the available secondary users under a shared constraint on all spectrum leasing decisions set by the secondary QoS requirements. A general formulation of the problem is given and solutions are proposed with different signaling requirements among the primary users. The novel idea of interference forwarding as a mechanism to enable DiSC is proposed, whereby primary users lease part of their spectrum to the secondary users if the latter assist by forwarding information about the interference to enable interference mitigation at the primary receivers. Finally, an application of DiSC in multi-tier wireless networks such as femtocells overlaid by macrocells whereby the femtocell base station acts as a relay for the macrocell users is presented. The performance advantages of the proposed application are evaluated by studying the transmission reliability of macro and femto users for a quasi-static fading channel in terms of outage probability and diversity-multiplexing trade-off for uplink and, more briefly, for downlink

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201
    corecore