6,514 research outputs found

    Axiomatic Theory of Complex Fuzzy Logic and Complex Fuzzy Classes

    Get PDF
    Complex fuzzy sets, classes, and logic have an important role in applications, such as prediction of periodic events and advanced control systems, where several fuzzy variables interact with each other in a multifaceted way that cannot be represented effectively via simple fuzzy operations such as union, intersection, complement, negation, conjunction and disjunction. The initial formulation of these terms stems from the definition of complex fuzzy grade of membership. The problem, however, with these definitions are twofold: 1) the complex fuzzy membership is limited to polar representation with only one fuzzy component. 2) The definition is based on grade of membership and is lacking the rigor of axiomatic formulation. A new interpretation of complex fuzzy membership enables polar and Cartesian representation of the membership function where the two function components carry uncertain information. Moreover, the new interpretation is used to define complex fuzzy classes and develop an axiomatic based theory of complex propositional fuzzy logic. Additionally, the generalization of the theory to multidimensional fuzzy grades of membership has been demonstrated. In this paper we propose an axiomatic framework for first order predicate complex fuzzy logic and use this framework for axiomatic definition of complex fuzzy classes. We use these rigorous definitions to exemplify inference in complex economic systems. The new framework overcomes the main limitations of current theory and provides several advantages. First, the derivation of the new theory is based on axiomatic approach and does not assume the existence of complex fuzzy sets or complex fuzzy classes. Second, the new form significantly improves the expressive power and inference capability of complex fuzzy logic and class theory. The paper surveys the current state of complex fuzzy sets, complex fuzzy classes, and complex fuzzy logic; and provides an axiomatic basis for first order predicate complex fuzzy logic and complex class theory

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    On Fuzzy Concepts

    Get PDF
    In this paper we try to combine two approaches. One is the theory of knowledge graphs in which concepts are represented by graphs. The other is the axiomatic theory of fuzzy sets (AFS). The discussion will focus on the idea of fuzzy concept. It will be argued that the fuzziness of a concept in natural language is mainly due to the difference in interpretation that people give to a certain word. As different interpretations lead to different knowledge graphs, the notion of fuzzy concept should be describable in terms of sets of graphs. This leads to a natural introduction of membership values for elements of graphs. Using these membership values we apply AFS theory as well as an alternative approach to calculate fuzzy decision trees, that can be used to determine the most relevant elements of a concept
    corecore