8,920 research outputs found

    Optimizing Abstract Abstract Machines

    Full text link
    The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.Comment: Proceedings of the International Conference on Functional Programming 2013 (ICFP 2013). Boston, Massachusetts. September, 201

    Towards sound refactoring in erlang

    Get PDF
    Erlang is an actor-based programming language used extensively for building concurrent, reactive systems that are highly available and suff er minimum downtime. Such systems are often mission critical, making system correctness vital. Refactoring is code restructuring that improves the code but does not change behaviour. While using automated refactoring tools is less error-prone than performing refactorings manually, automated refactoring tools still cannot guarantee that the refactoring is correct, i.e., program behaviour is preserved. This leads to lack of trust in automated refactoring tools. We rst survey solutions to this problem proposed in the literature. Erlang refactoring tools as commonly use approximation techniques which do not guarantee behaviour while some other works propose the use of formal methodologies. In this work we aim to develop a formal methodology for refactoring Erlang code. We study behavioural preorders, with a special focus on the testing preorder as it seems most suited to our purpose.peer-reviewe

    Towards Compatible and Interderivable Semantic Specifications for the Scheme Programming Language, Part I: Denotational Semantics, Natural Semantics, and Abstract Machines

    Get PDF
    We derive two big-step abstract machines, a natural semantics, and the valuation function of a denotational semantics based on the small-step abstract machine for Core Scheme presented by Clinger at PLDI'98. Starting from a functional implementation of this small-step abstract machine, (1) we fuse its transition function with its driver loop, obtaining the functional implementation of a big-step abstract machine; (2) we adjust this big-step abstract machine so that it is in defunctionalized form, obtaining the functional implementation of a second big-step abstract machine; (3) we refunctionalize this adjusted abstract machine, obtaining the functional implementation of a natural semantics in continuation style; and (4) we closure-unconvert this natural semantics, obtaining a compositional continuation-passing evaluation function which we identify as the functional implementation of a denotational semantics in continuation style. We then compare this valuation function with that of Clinger's original denotational semantics of Scheme

    Session Types in a Linearly Typed Multi-Threaded Lambda-Calculus

    Full text link
    We present a formalization of session types in a multi-threaded lambda-calculus (MTLC) equipped with a linear type system, establishing for the MTLC both type preservation and global progress. The latter (global progress) implies that the evaluation of a well-typed program in the MTLC can never reach a deadlock. As this formulated MTLC can be readily embedded into ATS, a full-fledged language with a functional programming core that supports both dependent types (of DML-style) and linear types, we obtain a direct implementation of session types in ATS. In addition, we gain immediate support for a form of dependent session types based on this embedding into ATS. Compared to various existing formalizations of session types, we see the one given in this paper is unique in its closeness to concrete implementation. In particular, we report such an implementation ready for practical use that generates Erlang code from well-typed ATS source (making use of session types), thus taking great advantage of the infrastructural support for distributed computing in Erlang.Comment: This is the original version of the paper on supporting programming with dyadic session types in AT

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201
    • …
    corecore