7 research outputs found

    Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method

    Get PDF
    The optimal control problem for flight trajectories of Fly-Gen airborne wind energy systems (AWESs) is a crucial research topic for the field, as suboptimal paths can lead to a drastic reduction in power production. One of the novelties of the present work is the expression of the optimal control problem in the frequency domain through a harmonic balance formulation. This allows the potential reduction of the problem size by solving only for the main harmonics and allows the implicit imposition of periodicity of the solution. The trajectory is described by the Fourier coefficients of the dynamics (elevation and azimuth angles) and of the control inputs (onboard wind turbine thrust and AWES roll angle). To isolate the effects of each physical phenomenon, optimal trajectories are presented with an increasing level of physical representation from the most idealized case: (i) if the mean thrust power (mechanical power linked to the dynamics) is considered as the objective function, optimal trajectories are characterized by a constant AWES velocity over the loop and a circular shape. This is done by converting all the gravitational potential energy into electrical energy. At low wind speed, onboard wind turbines are then used as propellers in the ascendant part of the loop; (ii) if the mean shaft power (mechanical power after momentum losses) is the objective function, a part of the potential energy is converted into kinetic and the rest into electrical energy. Therefore, the AWES velocity fluctuates over the loop; (iii) if the mean electrical power is considered as the objective function, the onboard wind turbines are never used as propellers because of the power conversion efficiency. Optimal trajectories for case (ii) and (iii) have a circular shape squashed along the vertical direction. The optimal control inputs can be generally modeled with one harmonic for the onboard wind turbine thrust and two for AWES roll angle without a significant loss of power, demonstrating that the absence of high-frequency control is not detrimental to the power generated by Fly-Gen AWESs.The work by PoliMI had no external funding and was therefore self-funded by the research team. The work by ICF was carried out under the framework of the GreenKite-2 project (PID2019-110146RB-I00) funded by MCIN/AEI/10.13039/501100011033

    Airborne Wind Energy - To fly or not to fly?

    Get PDF
    This thesis investigates crosswind Airborne Wind Energy Systems (AWESs) in terms of power production and potential role in future electricity generation systems. The perspective ranges from the small scale, modelling AWE as a single system, to the large, implementing AWESs in regional electricity systems. \ua0To estimate the AWES power production, the thesis provides a dynamic system model that serves as the basis for all the work. The model describes the flight dynamics of a rigid wing that is exposed to tether and aerodynamic forces controlled by flight control surfaces. Index-3 Differential Algebraic Equations (DAEs) based on Lagrangian mechanics describe the dynamics. \ua0This model is validated by fitting it to real flight measurements obtained with a pumping-mode AWES, the prototype AP2 by Ampyx Power. The optimal power production of an AWES depends on complex trade-offs; this motivates formulating the power production computation as an Optimal Control Problem (OCP). The thesis presents the numerical methods needed to discretize the OCP and solve the resulting Nonlinear Program (NLP). \ua0Large-scale implementation of AWESs raises challenges related to variability in power production on the time scale of minutes to weeks. For the former, we investigate the periodic fluctuations in the power output of a single AWES. These fluctuations can be severe when operating a wind farm and have to be considered and reduced for an acceptable grid integration. We analyse the option of controlling the flight trajectories of the individual systems in a farm so that the total power output of the farm is smoothed. This controlled operation fixes the system\u27s trajectory, reducing the ability to maximize the power output of individual AWESs to local wind conditions. We quantify the lost power production if the systems are controlled such that the total farm power output is smoothed. Results show that the power difference between the optimal and fixed trajectory does not exceed 4% for the systems modelled in the study.\ua0The variations in AWESs power production on the timescale of hours to weeks are particularly relevant to the interaction between AWE and other power generation technologies. Investigating AWESs in an electricity system context requires power-generation profiles with high spatio-temporal resolution, which means solving a large number of OCPs. In order to efficiently solve these numerous OCPs in a sequential manner, this thesis presents a homotopy-path-following method combined with modifications to the NLP solver. The implementation shows a 20-fold reduction in computation time compared to the original method for solving the NLP for AWES power optimization.\ua0 For large wind-data sets, a random forest regression model is trained to a high accuracy, providing an even faster computation.The annual generation profiles for the modelled systems are computed using ERA5 wind data for several locations and compared to the generation profile for a traditional wind turbine. The results show that the profiles are strongly correlated in time, which is a sobering fact in terms of technology competition. However, the correlation is weaker in locations with high wind shear.\ua0 \ua0The potential role of AWESs in the future electricity system is further investigated. This thesis implements annual AWE-farm generation profiles into a cost-optimizing electricity system model. We find that AWE is most valuable to the electricity system if installed at sites with low wind speed within a region. At greater shares of the electricity system, even if AWESs could demonstrate lower costs compared to wind turbines, AWE would merely substitute for them instead of increasing the total share of wind energy in the system. This implies that the economic value of an AWES is limited by its cost relative to traditional wind turbines

    Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data

    Get PDF
    Airborne Wind Energy (AWE) is a new power technology that harvests wind energy at high altitudes using tethered wings. Studying the power potential of the system at a given location requires evaluating the local power production profile of the AWE system. As the optimal operational AWE system altitude depends on complex trade-offs, a commonly used technique is to formulate the power production computation as an Optimal Control Problem (OCP). In order to obtain an annual power production profile, this OCP has to be solved sequentially for the wind data for each time point. This can be computationally costly due to the highly nonlinear and complex AWE system model. This paper proposes a method how to reduce the computational effort when using an OCP for power computations of large-scale wind data. The method is based on homotopy-path-following strategies, which make use of the similarities between successively solved OCPs. Additionally, different machine learning regression models are evaluated to accurately predict the power production in the case of very large data sets. The methods are illustrated by computing a three-month power profile for an AWE drag-mode system. A significant reduction in computation time is observed, while maintaining good accuracy

    Airborne Wind Energy - to fly or not to fly?

    Get PDF
    This thesis investigates crosswind Airborne Wind Energy Systems (AWESs) in terms of power production and potential role in future electricity generation systems. The perspective ranges from the small scale, modelling AWE as a single system, to the large, implementing AWESs in regional electricity systems. \ua0To estimate the AWES power production, the thesis provides a dynamic system model that serves as the basis for all the work. The model describes the flight dynamics of a rigid wing that is exposed to tether and aerodynamic forces controlled by flight control surfaces. Index-3 Differential Algebraic Equations (DAEs) based on Lagrangian mechanics describe the dynamics. \ua0This model is validated by fitting it to real flight measurements obtained with a pumping-mode AWES, the prototype AP2 by Ampyx Power. The optimal power production of an AWES depends on complex trade-offs; this motivates formulating the power production computation as an Optimal Control Problem (OCP). The thesis presents the numerical methods needed to discretize the OCP and solve the resulting Nonlinear Program (NLP). \ua0Large-scale implementation of AWESs raises challenges related to variability in power production on the time scale of minutes to weeks. For the former, we investigate the periodic fluctuations in the power output of a single AWES. These fluctuations can be severe when operating a wind farm and have to be considered and reduced for an acceptable grid integration. We analyse the option of controlling the flight trajectories of the individual systems in a farm so that the total power output of the farm is smoothed. This controlled operation fixes the system\u27s trajectory, reducing the ability to maximize the power output of individual AWESs to local wind conditions. We quantify the lost power production if the systems are controlled such that the total farm power output is smoothed. Results show that the power difference between the optimal and fixed trajectory does not exceed 4% for the systems modelled in the study.\ua0The variations in AWESs power production on the timescale of hours to weeks are particularly relevant to the interaction between AWE and other power generation technologies. Investigating AWESs in an electricity system context requires power-generation profiles with high spatio-temporal resolution, which means solving a large number of OCPs. In order to efficiently solve these numerous OCPs in a sequential manner, this thesis presents a homotopy-path-following method combined with modifications to the NLP solver. The implementation shows a 20-fold reduction in computation time compared to the original method for solving the NLP for AWES power optimization.\ua0 For large wind-data sets, a random forest regression model is trained to a high accuracy, providing an even faster computation.The annual generation profiles for the modelled systems are computed using ERA5 wind data for several locations and compared to the generation profile for a traditional wind turbine. The results show that the profiles are strongly correlated in time, which is a sobering fact in terms of technology competition. However, the correlation is weaker in locations with high wind shear.\ua0 \ua0The potential role of AWESs in the future electricity system is further investigated. This thesis implements annual AWE-farm generation profiles into a cost-optimizing electricity system model. We find that AWE is most valuable to the electricity system if installed at sites with low wind speed within a region. At greater shares of the electricity system, even if AWESs could demonstrate lower costs compared to wind turbines, AWE would merely substitute for them instead of increasing the total share of wind energy in the system. This implies that the economic value of an AWES is limited by its cost relative to traditional wind turbines

    Impact of wind profiles on ground-generation airborne wind energy system performance

    Get PDF
    This study investigates the performance of pumping-mode ground-generation airborne wind energy systems (AWESs) by determining cyclical, feasible, power-optimal flight trajectories based on realistic vertical wind velocity profiles. These 10 min profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the trajectory. To reduce the computational cost, representative wind conditions are determined based on k-means clustering. The results describe the influence of wind speed magnitude and profile shape on the power, tether tension, tether reeling speed, and kite trajectory during a pumping cycle. The effect of mesoscale-simulated wind profiles on power curves is illustrated by comparing them to logarithmic wind profiles. Offshore, the results are in good agreement, while onshore power curves differ due to more frequent non-monotonic wind conditions. Results are references against a simplified quasi-steady-state model and wind turbine model. This study investigates how power curves based on mesoscale-simulated wind profiles are affected by the choice of reference height. Our data show that optimal operating heights are generally below 400 m with most AWESs operating at around 200 m.</p

    Operational Regions of a Multi-Kite AWE System

    No full text
    Multiple-kite airborne wind energy systems (MAWES) aim to efficiently harvest the stronger, less-intermittent winds at high altitude without material-intensive towers. Solving a series of optimal control problems for two-kite MAWES, we show that pumping-cycle MAWES have three distinct operational regions: Region I, where power is consumed to stay aloft; Region II, where the power harvesting factor grows until the design wind speed; and Region III, where the power extraction is curtailed so as to respect the physical limitations of the system. The actuator disk (AD) method is arguably the simplest tool to model aerodynamic induction effects, though its validity is limited. In this paper, we show that AD is not valid for Region I
    corecore