137 research outputs found

    Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    Get PDF
    AbstractOne of the main challenges for the wind turbine industry currently, is to reduce the cost of levelized energy, especially for offshore wind. Failures in the wind turbine drivetrain generally result in the second largest down times of the wind turbine, hence significantly increasing the cost of operation and maintenance. The manufacturing of casted drivetrain components, like the main shaft of the wind turbine, commonly result in many smaller defects through the volume of the component with sizes that depend on the manufacturing method. This paper considers the effect of the initial defect present in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed

    Innovative Stormwater Treatment Technologies: Best Management Practices Manual

    Get PDF
    Urban stormwater carries a number of pathogens, nutrients, heavy metals, sediment, and other contaminants as surface runoff flows over land. The increase in impervious or paved surfaces associated with development in urban areas reduces the natural infiltration of precipitation into the ground. With impervious cover, precipitation collects and carries contaminants before draining into nearby surface waters. Stormwater runoff from paved surfaces in developed areas can degrade downstream waters with both contaminants and increased volumes of water. This publication aims to make information on innovative stormwater treatment technologies more available to New Hampshire’s urban planners, developers, and communities. Traditional runoff management techniques such as detention basins and infiltration swales may be preferable, but are not always practical for treating urban stormwater. Lack of space for natural solutions is often a problem in existing developed areas, making innovative treatment technologies an attractive alternative. Mostly designed for subsurface installation, urban “retrofits” use less space than conventional methods to treat stormwater. This manual provides information on the innovative stormwater “retrofit” technologies currently available for use in developed areas in New Hampshire

    Risk-based Operation and Maintenance of Offshore Wind Turbines

    Get PDF

    Risk-Based Operation and Maintenance of Offshore Wind Turbines

    Get PDF

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    A SMART software package for maintenance optimisation of offshore wind turbines.

    Get PDF
    Offshore Wind Turbine (OWT) maintenance costs in between 20 - 35% of the lifetime power generation cost. Many techniques and tools that are being developed to curtail this cost are challenged by the stochastic climatic conditions of offshore location and the wind energy market. A generic and OWT centric software packages that can smartly adapt to the requirement of any offshore wind farm and optimise its maintenance, logistics and spares-holding while giving due consideration to offshore climate and market conditions will enable OWT operators to centralise their operation and maintenance planning and make significant cost reductions. This work aims to introduce the idea of a comprehensive tool that can meet the above objectives, and give examples of data and functions required. The package uses wind turbine condition monitoring data to anticipate component failure and proposes a time and maintenance implementation strategies that is developed as per the requirements of HSE and government regulations for working in the offshore locations and at heights. The software database contains key failure analysis data that will be an invaluable asset for future researchers, turbine manufacturers and operators, that will optimise OWT power generation cost and better understand OWT working. The work also lists some prevalent tools and techniques developed by industries and researchers for the wind industry
    • …
    corecore