44,583 research outputs found

    Improve OR-schedule to reduce number of required beds

    Get PDF
    After surgery most of the surgical patients have to be admitted in a ward in the hospital. Due to financial reasons and an decreasing number of available nurses in the Netherlands over the years, it is important to reduce the bed usage as much as possible. One possible way to achieve this is to create an operating room (OR) schedule that spreads the usage of beds nicely over time, and thereby minimizes the number of required beds. An OR-schedule is given by an assignment of OR-blocks to specific days in the planning horizon and has to fulfill several resource constraints. Due to the stochastic nature of the length of stay of patients, the analytic calculation of the number of required beds for a given OR-schedule is a complex task involving the convolution of discrete distributions. In this paper, two approaches to deal with this complexity are presented. First, a heuristic approach based on local search is given, which takes into account the detailed formulation of the objective. A second approach reduces the complexity by simplifying the objective function. This allows modeling and solving the resulting problem as an ILP. Both approaches are tested on data provided by Hagaziekenhuis in the Netherlands. Furthermore, several what-if scenarios are evaluated. The computational results show that the approach that uses the simplified objective function provides better solutions to the original problem. By using this approach, the number of required beds for the considered instance of HagaZiekenhuis can be reduced by almost 20%

    Flexible nurse staffing based on hourly bed census predictions

    Get PDF
    Workload on nursing wards depends highly on patient arrivals and patient lengths of stay, which are both inherently variable. Predicting this workload and staffing nurses accordingly is essential for guaranteeing quality of care in a cost effective manner. This paper introduces a stochastic method that uses hourly census predictions to derive efficient nurse staffing policies. The generic analytic approach minimizes staffing levels while satisfying so-called nurse-to-patient ratios. In particular, we explore the potential of flexible staffing policies which allow hospitals to dynamically respond to their fluctuating patient population by employing float nurses. The method is applied to a case study of the surgical inpatient clinic of the Academic Medical Center (AMC) Amsterdam. This case study demonstrates the method's potential to study the complex interaction between staffing requirements and several interrelated planning issues such as case mix, care unit partitioning and size, and surgical block planning. Inspired by the numerical results, the AMC decided that this flexible nurse staffing methodology will be incorporated in the redesign of the inpatient care operations during the upcoming years

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    How stochasticity and emergencies disrupt the surgical schedule

    Get PDF
    In health care system, the operating theatre is recognized as having an important role, notably in terms of generated income and cost. Its management, and in particular its scheduling, is thus a critical activity, and has been the sub ject of many studies. However, the stochasticity of the operating theatre environment is rarely considered while it has considerable effect on the actual working of a surgical unit. In practice, the planners keep a safety margin, let’s say 15% of the capacity, in order to absorb the effect of unpredictable events. However, this safety margin is most often chosen sub jectively, from experience. In this paper, our goal is to rationalize this process. We want to give insights to managers in order to deal with the stochasticity of their environment, at a tactical–strategic decision level. For this, we propose an analytical approach that takes account of the stochastic operating times as well as the disruptions caused by emergency arrivals. From our model, various performance measures can be computed: the emergency disruption rate, the waiting time for an emergency, the distribution of the working time, the probability of overtime, the average overtime, etc. In particular, our tool is able to tell how many operations can be scheduled per day in order to keep the overtime limited.health care, surgical schedule, emergencies, Markov chain.

    Long term evaluation of operating theater planning policies

    Get PDF
    This paper addresses Operating Room (OR) planning policies in elective surgery. In particular, we investigate long-term policies for determining the Master Surgical Schedule (MSS) throughout the year, analyzing the tradeoff between organizational simplicity, favored by an MSS that does not change completely every week, and quality of the service offered to the patients, favored by an MSS that dynamically adapts to the current state of waiting lists, the latter objective being related to a lean approach to hospital management. Surgical cases are selected from the waiting lists according to several parameters, including surgery duration, waiting time and priority class of the operations. We apply the proposed models to the operating theater of a public, medium-size hospital in Empoli, Italy, using Integer Linear Programming formulations, and analyze the scalability of the approach on larger hospitals. The simulations point out that introducing a very limited degree of variability in MSS in terms of OR sessions assignment can largely pay off in terms of resource efficiency and due date performance

    A multilevel integrative approach to hospital case mix and capacity planning.

    Get PDF
    Hospital case mix and capacity planning involves the decision making both on patient volumes that can be taken care of at a hospital and on resource requirements and capacity management. In this research, to advance both the hospital resource efficiency and the health care service level, a multilevel integrative approach to the planning problem is proposed on the basis of mathematical programming modeling and simulation analysis. It consists of three stages, namely the case mix planning phase, the master surgery scheduling phase and the operational performance evaluation phase. At the case mix planning phase, a hospital is assumed to choose the optimal patient mix and volume that can bring the maximum overall financial contribution under the given resource capacity. Then, in order to improve the patient service level potentially, the total expected bed shortage due to the variable length of stay of patients is minimized through reallocating the bed capacity and building balanced master surgery schedules at the master surgery scheduling phase. After that, the performance evaluation is carried out at the operational stage through simulation analysis, and a few effective operational policies are suggested and analyzed to enhance the trade-offs between resource efficiency and service level. The three stages are interacting and are combined in an iterative way to make sound decisions both on the patient case mix and on the resource allocation.Health care; Case mix and capacity planning; Master surgery schedule; Multilevel; Resource efficiency; Service level;

    Optimizing a multiple objective surgical case scheduling problem.

    Get PDF
    The scheduling of the operating theater on a daily base is a complicated task and is mainly based on the experience of the human planner. This, however, does not mean that this task can be seen as unimportant since the schedule of individual surgeries influences a medical department as a whole. Based on practical suggestions of the planner and on real-life constraints, we will formulate a multiple objective optimization model in order to facilitate this decision process. We will show that this optimization problem is NP-hard and hence hard to solve. Both exact and heuristic algorithms, based on integer programming and on implicit enumeration (branch-and-bound), will be introduced. These solution approaches will be thoroughly tested on a realistic test set using data of the surgical day-care center at the university hospital Gasthuisberg in Leuven (Belgium). Finally, results will be analyzed and conclusions will be formulated.Algorithms; Belgium; Branch-and-bound; Constraint; Data; Decision; Experience; Healthcare; Heuristic; Integer; Integer programming; Model; Optimization; Order; Processes; Real life; Scheduling; University;
    corecore