4 research outputs found

    OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection

    Get PDF
    Line segment intersection is one of the elementary operations in computational geometry. Complex problems in Geographic Information Systems (GIS) like finding map overlays or spatial joins using polygonal data require solving segment intersections. Plane sweep paradigm is used for finding geometric intersection in an efficient manner. However, it is difficult to parallelize due to its in-order processing of spatial events. We present a new fine-grained parallel algorithm for geometric intersection and its CPU and GPU implementation using OpenMP and OpenACC. To the best of our knowledge, this is the first work demonstrating an effective parallelization of plane sweep on GPUs. We chose compiler directive based approach for implementation because of its simplicity to parallelize sequential code. Using Nvidia Tesla P100 GPU, our implementation achieves around 40X speedup for line segment intersection problem on 40K and 80K data sets compared to sequential CGAL library

    Parallelization of Plane Sweep Based Voronoi Construction with Compiler Directives

    Get PDF
    Voronoi diagram construction is a common and fundamental problem in computational geometry and spatial computing. Numerous sequential and parallel algorithms for Voronoi diagram construction exists in literature. This paper presents a multi-threaded approach where we augment an existing sequential implementation of Fortune\u27s planesweep algorithm with compiler directives. The novelty of our fine-grained parallel algorithm lies in exploiting the concurrency available at each event point encountered during the algorithm. On the Intel Xeon E5 CPU, our shared-memory parallelization with OpenMP achieves around 2x speedup compared to the sequential implementation using datasets containing 2k-128k sites

    Efficient Parallel and Adaptive Partitioning for Load-balancing in Spatial Join

    Get PDF
    Due to the developments of topographic techniques, clear satellite imagery, and various means for collecting information, geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of spatial computations and analytics on large spatial data sets, parallel processing is required. To exploit fine-grained parallel processing in large scale compute clusters, partitioning in a load-balanced way is necessary for skewed datasets. In this work, we focus on spatial join operation where the inputs are two layers of geospatial data. Our partitioning method for spatial join uses Adaptive Partitioning (ADP) technique, which is based on Quadtree partitioning. Unlike existing partitioning techniques, ADP partitions the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. Based on our experimental evaluation, ADP partitions spatial data in a more balanced way than Quadtree partitioning and Uniform grid partitioning. ADP uses an output-sensitive duplication avoidance technique which minimizes duplication of geometries that are not part of spatial join output. In a distributed memory environment, this technique can reduce data communication and storage requirements compared to traditional methods.To improve the performance of ADP, an MPI+Threads based parallelization is presented. With ParADP, a pair of real world datasets, one with 717 million polylines and another with 10 million polygons, is partitioned into 65,536 grid cells within 7 seconds. ParADP performs well with both good weak scaling up to 4,032 CPU cores and good strong scaling up to 4,032 CPU cores

    Hierarchical Filter and Refinement System Over Large Polygonal Datasets on CPU-GPU

    Get PDF
    In this paper, we introduce our hierarchical filter and refinement technique that we have developed for parallel geometric intersection operations involving large polygons and polylines. The inputs are two layers of large polygonal datasets and the computations are spatial intersection on a pair of cross-layer polygons. These intersections are the compute-intensive spatial data analytic kernels in spatial join and map overlay computations. We have extended the classical filter and refine algorithms using PolySketch Filter to improve the performance of geospatial computations. In addition to filtering polygons by their Minimum Bounding Rectangle (MBR), our hierarchical approach explores further filtering using tiles (smaller MBRs) to increase the effectiveness of filtering and decrease the computational workload in the refinement phase. We have implemented this filter and refine system on CPU and GPU by using OpenMP and OpenACC. After using R-tree, on average, our filter technique can still discard 69% of polygon pairs which do not have segment intersection points. PolySketch filter reduces on average 99.77% of the workload of finding line segment intersections. PNP based task reduction and Striping algorithms filter out on average 95.84% of the workload of Point-in-Polygon tests. Our CPU-GPU system performs spatial join on two shapefiles, namely USA Water Bodies and USA Block Group Boundaries with 683K polygons in about 10 seconds using NVidia Titan V and Titan Xp GPU
    corecore