
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Computer Science Faculty Research and 
Publications Computer Science, Department of 

2019 

Parallelization of Plane Sweep Based Voronoi Construction with Parallelization of Plane Sweep Based Voronoi Construction with 

Compiler Directives Compiler Directives 

Anmol Paudel 

Jie Yang 

Satish Puri 

Follow this and additional works at: https://epublications.marquette.edu/comp_fac 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/395476564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 
 

Computer Science Faculty Research and Publications/College of Arts and 
Sciences  

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, (2019): 908-911. DOI. This 
article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has been granted for 
this version to appear in e-Publications@Marquette. Institute of Electrical and Electronic Engineers 
(IEEE) does not grant permission for this article to be further copied/distributed or hosted elsewhere 
without the express permission from Institute of Electrical and Electronic Engineers (IEEE).  

 

Parallelization of Plane Sweep Based Voronoi 
Construction with Compiler Directives 
 

Anmol Paudel 
MSCS Department, Marquette University 
Jie Yang 
MSCS Department, Marquette University 
Satish Puri 
MSCS Department, Marquette University 
 

SECTION I. Introduction 
Voronoi diagrams are extensively used in computational geometry to partition a plane into multiple regions 
where each region corresponds to and contain a site, and that site will be the closest site to all points in that 
region. Figure 1 shows a Voronoi diagram with a unique region for each site. Here is a mathematical definition 
[1] of a Voronoi region: 
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Definition 1. Let P: = {p1, p2,…, pn} be a set of n distinct points in the plane; these points are the sites. We define 
the Voronoi diagram of P as the subdivision of the plane into n cells, one for each site in P, with the property that 
a point q lies in the cell corresponding to a site pi, if and only if dist(q, pi) < dist(q, pj) for each pj ∈ with j ≠ i. 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞): = �(𝑝𝑝𝑥𝑥 − 𝑞𝑞𝑥𝑥)2 + (𝑝𝑝𝑦𝑦 − 𝑞𝑞𝑦𝑦)2 

There are different algorithms to construct Voronoi diagram with n sites as input. A brute-force algorithm 
constructs one region at a time. Since each region is the intersection of n-1 half planes, it takes O(nlogn) time 
per region, thereby resulting in an O(n2logn) time algorithm. An optimal algorithm has O(nlogn) lower bound [2]. 
The planesweep algorithm that we consider here for parallelization is an optimal algorithm. 

We are exploiting parallelism in the planesweep algorithm on a per event basis, however, the order of event 
processing is still sequential. This is because there is interdependence between the static and dynamic events 
generated by concurrent event processing. We have discovered that there is enough computation in an event 
itself to warrant performance improvement in a shared memory environment. These computations include 
intersection of neighboring arcs (w.r.t. an event) that is required to generate new events. This is the first work to 
identify and report the performance enhancement possible while concurrently maintaining the spatial data 
structures (beachline) on a per-event basis. 

 

Fig. 1. Voronoi Diagram 

[The dots in the figure are the sites and the lines are the edges of the a partitioned region. It can be observed 
that for any arbitrary point in the whole space, the closest site is the one inside the same region as it is.] 

This paper is a part of our series of work focused on parallelizing existing spatial and computational geometry 
code using compiler directives. Our prior work was successful in the parallelization of the planesweep version of 
segment intersection and polygon intersection problems [3], [4], [5]. Existing literature focuses on theoretical 
work on parallel algorithms [6], [7]. There are other approaches of parallelization that use data decomposition 
[2], [8]. However, data decomposition algorithms require expensive merging steps ( O(n) time complexity) which 
are non-trivial to implement efficiently. Our work does not require explicit data decomposition. 

This paper explores the concurrency available in processing each event in Voronoi diagram construction and 
uses directives to make an existing implementation of Fortune’s algorithm faster with minimal efforts using 
compiler directives. OpenMP is an application programming interface which enables us to parallelize existing C, 
C++ or Fortran code by just adding compiler directives (#pragma) to it. The compiler takes the directives as hints 
for potential ways to inject parallelism in the sequential code. Directives based parallelization can be targeted at 
multicore CPUs, GPUs or a combination of both. Adding directives should not affect the correctness of the 
results produced, although the order in which results are produced might vary due to concurrency. Compiler 
directives based parallelization is more maintainable and performance portable to different multicore 
architectures and removes the hassle of having to change the parallelized code according to changes in 
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multicore architecture. Even though, OpenMP is good for regular parallelism, here we are trying to extract 
irregular and dynamic parallelism exposed by our modified Fortune’s algorithm. 

SECTION II. Fortune’s Algorithm 
Fortune’s algorithm is a planesweep algorithm for computing Voronoi Diagram in O(nlogn) time with O(n) space 
[9]. Fortune presented a transformation that could be used to compute Voronoi diagrams with a sweepline 
technique. [9] 

 

Fig. 2. A snapshot of the algorithm showing circle events, a vertical sweep line and beachline made up of arcs. 
(Best viewed in color) 

In Figure 2, the dark grey dots are the site points. The blue dots are the Voronoi vertices and lines connecting 
the blue dots are the Voronoi edges. The vertical blue line is the sweepline. The green and red arcs form the 
beachline structure at the sweepline position. The light grey circles are the circle events. As the sweepline 
reaches a site point, an arc/parabola corresponding to it is created which will grow as the sweepline progresses 
and is clipped by neighbouring arcs or new arc ahead of it. The collection of active arcs is the beachline. 

Algorithm 1 is a simplified algorithmic description of the implementation of Fortune’s Algorithm. The focus of 
the description here is to show the flow of the algorithm so that the possibilities and limitations to a directive 
based approach can be explored. This algorithmic description here is necessary to understand the flow of 
execution and interdependencies among the variables that are key to any directive-based parallelization. 

Algorithm 1 Fortune’s Algorithm (Horizontal Sweep)  

1: P ← load all points 
2: Initialize a bounding box with offset 
3: Initialize beachline B 

// B is of type arc 
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4: Initialize output O 
// O is a collection of edges of the partitioned regions 

5: Initialize events priority queue 
// event with minimum x-coordinate is at the top 

6: Sort P in ascending order by x-coordinate 
7: for each p in P do 
8:  while (events.top.x <= p.x) do 
9:   ProcessEvent(events.deque()) 
10:  end while 
11:  ProcessPoint(p) 
12: end for 
13: ProcessRemainingEvents() 
14: FinishEdges() 
 

In the event data structure, x is the maximum x-location a circle event can affect and it introduces a event 
processing there. So, x = p.x + radiusOfTheCircle. 

Listing 1. Data Structure for Event 

struct event { 
var x ; 
point p ; 
arc  ∗ a;  

} 
 

Algorithm 2 ProcessEvent(event e)  

1: Input event e 
2: if (e.valid) then 
3:  Begin a new Segment s at e.x 
4:  Remove e.a from beachline B 
5:  Complete segments e.a.s0 and e.a.s1 
6:  // Check circle events 

CheckCircleEvent(e.a.prev, e.x)  
CheckCircleEvent(e.a.next, e.x) 

7:   end if 
 

A. Parallelizing Fortune’s Algorithm 
We start by trying to find opportunities in the algorithm where compiler directives can be inserted for 
parallelization. The most obvious choice would be to parallelize the loops. Loop parallelization using directives is 
the easiest way to parallelize and usually has very less overheads. Furthermore, internal loops inside nested 
loops can also be parallelized. 

In Algorithm 1, the for-loops and while loops cannot be directly parallelized due to interdependencies and 
memory side-effects. Algorithm 3 and Algorithm 2 can not run concurrently due to the interdependence of site 
events and the circle events. 

In Algorithm 2, since entirety of its execution is based on a conditional, we need to determine the possibility of 
parallelizing this portion if it gets executed. Here, line 4 is dependent on line 3 because we need the segment s 



to remove e.a from beachline B. However, excluding this, the two operations in line 5 and the two operations in 
line 6 can be parallelized to run concurrently. Completing the two segments in line 5 does not affect any other 
operations that could happen here concurrently. However the two circle events check in line 6 can lead to new 
events being added, but since these events are just added and not used elsewhere, we can put adding events 
part of the code inside critical sections and still parallelize line 6. So, in overall we can have five sections that run 
in parallel here - one section would comprise of lines 3 and 4, another two sections would comprise of 
completing each segment in line 5 and the other two sections would comprise of the two circle events checks in 
line 6. 

Algorithm 3 ProcessPoint(point p)  

1: Input point p 
2: for arc i in beachline B do 
3:  if intersects(p,i) then 
4:   Add new arc at p.x to beachline B 
5:   Connect new arc to prev and next segments of i  

CheckCircleEvent(i, p.x)  
CheckCircleEvent(i.prev, p.x)  
CheckCircleEvent(i.next, p.x) 

6:   return 
7:  end if 
8: end for 
9: arc I ← last arc in B 
10: Insert segment between p and i 
 

Algorithm 3 is even more complicated to parallelize because it has loops, conditionals inside loop and early exits 
inside those conditionals. An event is rendered invalid if the arc associated with that event is no longer in the 
beachline. 

The outermost loop is searching for an arc corresponding to the new event. This is done by performing an 
exhaustive search looking for a single instance for which the search criterion is fulfilled. Then a series of 
operations is performed on the resultant instance if it was found. If a resultant instance was found then not only 
the loop is returned but the whole procedure is exited. We can start by separating the search and the execution 
of the result of the search. So, we parallelize the loop in step 2 to find an arc i which satisfies the if-condition and 
remove the execution part below. One problem here is that if such an arc is found by sequential iteration early 
on, parallelizing it might just give us unessential overhead. To remedy this, we will convert this search loop into 
a chunked iterative exhaustive search loop by providing hints to the compiler that there might be a loop 
cancellation before each chunked iteration. This transformation makes it suitable for utilizing OpenMP parallel 
loop cancellation feature as shown line 5 and line 6 of Algorithm 4. 

Concurrent Processing of Circle Events 
Another problem with Algorithm 3 is that, a sequential search would have terminated after finding the first 
instance for which the search criteria would have been satisfied but during a concurrent chunked iteration, 
there might be multiple instances for which the search criteria has been satisfied. For correctness with regards 
to the sequential code, we can use a minimum reduction to make certain that the first instance is reported. At 
this point we will either have an arc i that satisfies the conditional or not and the loop will be exited but the 
procedure will not have been terminated. We can put this conditional of whether an arc i has been found in an 
if-statement with its else-part as lines 10-11. If an arc i has been found then we can execute the lines 4-6 with i 
and if not then we execute lines 10-11. This removes any early procedure terminating conditions from Algorithm 
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3. Then lines 4-6 that has been moved out of the loop and put inside this new conditional statement can now be 
explored for further parallelism. Lines 4-5 need to be executed sequentially because line 5 is dependent on the 
arc created in line 4. However, as shown in Algorithm 4, the three parts of line 6 can be parallelized to run 
concurrently even along with lines 4-5. Again, here the circle events check can lead to new events being added, 
but since these events are just added and not used elsewhere, we can put adding events part of the code inside 
critical sections and still parallelize. However, we will not be able to parallelize lines 10-11 of Algorithm 3 
because its execution needs to be sequential. So, in this portion we are able to parallelize the search phase and 
lines 4-6 after they have been moved outside. As shown by Algorithm 4, Lines 4-6 from Algorithm 3 will have 
four sections - first section would comprise of lines 4-5 and the other three sections would comprise each of the 
three parts of line 6. 

SECTION III. Results 
An OpenMP implementation of code was created using the analysis in section II-A and executed on data with 
varying number of sites. The skeleton for the sequential C++ code used was inspired by the work of Matt 
Brubeck [10]. The machine used to run the OpenMP code has the Intel Xeon E5-2695 multi-core CPU with 45MB 
cache and base frequency of 2.10GHz. 

TABLE I Timings of Running the Code in Sequential and With OpenMP  

Sites Sequential OpenMP SpeedUp 
2k 0.456s 0.165s 2.761 
4k 0.758s 0.419s 1.809 
8k 2.06s 0.995s 2.070 
16k 6.496s 2.748s 2.364 
32k 13.748s 5.162s 2.663 
64k 38.847s 18.029s 2.155 
128k 84.396s 39.305s 2.147 

 

Figure 3 shows the execution time for different number of site events. Even with the overhead of parallelization, 
the OpenMP version beats its sequential counterpart. We can see from Table I that we get almost above 2x 
speedup using upto four threads. The distribution of points affects the runtime of our algorithm and we have 
observed that having some types of distribution of points improves the performance of our algorithm. The 
speedup varies for different number of sites because the time taken to search for an arc corresponding to the 
event being processed is variable. In Algorithm 4, there are two code blocks which have been parallelized using 
OpenMP. There is a sequential dependency between block 1 (lines 2-7) and block 2 (lines 8-18). Even though the 
for-loop is highly parallelizable, the second block with OpenMP sections can only use few threads. In the worst 
case scenario, the execution time for block 1 depends on the number of active arcs in the beachline but in 
average case, the intersection test (line 3) can finish much earlier. We have found that beyond four threads 
there is a degradation in efficiency. 

Algorithm 4 ProcessPoint(point p) with directives  

1: Input point p, initialize bool doesIntersect = False 
 

#pragma omp parallel for num threads(threadCount) 
2: for arc i in beachline B do 

J ← index of arc i in beachline B 
3:  if intersects(p,i) then 



4:   ind = j  
5:   doesIntersect = True  

#pragma omp cancel for 
6:  end if 

#pragma omp cancellation point for 
7: end for 
 
8: if (doesIntersect == True) then 
9:  arc I ← B[ind] 

#pragma omp parallel sections 
{ 

#pragma omp section 
{ 

10:   Add new arc at p.x to beachline B 
11:   Connect new arc to prev and next segments of i 

} 
#pragma omp section 

12:   CheckCircleEvent(i, p.x)  
#pragma omp section 

13:   CheckCircleEvent(i.prev, p.x)  
#pragma omp section 

14:   CheckCircleEvent(i.next, p.x) 
 } 
15: else 
16:  arc I ← last arc in B 
17:  Insert segment between p and i 
18: end if 
 

SECTION IV. Conclusion 
Our experiments and design space exploration in directives-based parallelization of Fortune’s algorithm has 
yielded a shared memory implementation that gives around 2x speedup compared to the sequential version. A 
four threaded parallelization is extremely useful for applications that run on personal devices with quad-core 
processors or on cloud instances where the most common instance of compute nodes usually has four cores. 
We have experimentally demonstrated a novel way of extracting irregular and dynamic parallelism inherent at 
each event of the algorithm. Moreover, our new method decreases the run-time of the algorithm on data sets of 
different size. 
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Fig. 3. Sequential vs OpenMP timings 
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