
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

2019

Parallelization of Plane Sweep Based Voronoi Construction with Parallelization of Plane Sweep Based Voronoi Construction with

Compiler Directives Compiler Directives

Anmol Paudel

Jie Yang

Satish Puri

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/395476564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The
published version may be accessed by following the link in the citation below.

2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, (2019): 908-911. DOI. This
article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has been granted for
this version to appear in e-Publications@Marquette. Institute of Electrical and Electronic Engineers
(IEEE) does not grant permission for this article to be further copied/distributed or hosted elsewhere
without the express permission from Institute of Electrical and Electronic Engineers (IEEE).

Parallelization of Plane Sweep Based Voronoi
Construction with Compiler Directives

Anmol Paudel
MSCS Department, Marquette University
Jie Yang
MSCS Department, Marquette University
Satish Puri
MSCS Department, Marquette University

SECTION I. Introduction
Voronoi diagrams are extensively used in computational geometry to partition a plane into multiple regions
where each region corresponds to and contain a site, and that site will be the closest site to all points in that
region. Figure 1 shows a Voronoi diagram with a unique region for each site. Here is a mathematical definition
[1] of a Voronoi region:

https://doi.org/10.1109/COMPSAC.2019.00136
http://epublications.marquette.edu/

Definition 1. Let P: = {p1, p2,…, pn} be a set of n distinct points in the plane; these points are the sites. We define
the Voronoi diagram of P as the subdivision of the plane into n cells, one for each site in P, with the property that
a point q lies in the cell corresponding to a site pi, if and only if dist(q, pi) < dist(q, pj) for each pj ∈ with j ≠ i.

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞): = �(𝑝𝑝𝑥𝑥 − 𝑞𝑞𝑥𝑥)2 + (𝑝𝑝𝑦𝑦 − 𝑞𝑞𝑦𝑦)2

There are different algorithms to construct Voronoi diagram with n sites as input. A brute-force algorithm
constructs one region at a time. Since each region is the intersection of n-1 half planes, it takes O(nlogn) time
per region, thereby resulting in an O(n2logn) time algorithm. An optimal algorithm has O(nlogn) lower bound [2].
The planesweep algorithm that we consider here for parallelization is an optimal algorithm.

We are exploiting parallelism in the planesweep algorithm on a per event basis, however, the order of event
processing is still sequential. This is because there is interdependence between the static and dynamic events
generated by concurrent event processing. We have discovered that there is enough computation in an event
itself to warrant performance improvement in a shared memory environment. These computations include
intersection of neighboring arcs (w.r.t. an event) that is required to generate new events. This is the first work to
identify and report the performance enhancement possible while concurrently maintaining the spatial data
structures (beachline) on a per-event basis.

Fig. 1. Voronoi Diagram

[The dots in the figure are the sites and the lines are the edges of the a partitioned region. It can be observed
that for any arbitrary point in the whole space, the closest site is the one inside the same region as it is.]

This paper is a part of our series of work focused on parallelizing existing spatial and computational geometry
code using compiler directives. Our prior work was successful in the parallelization of the planesweep version of
segment intersection and polygon intersection problems [3], [4], [5]. Existing literature focuses on theoretical
work on parallel algorithms [6], [7]. There are other approaches of parallelization that use data decomposition
[2], [8]. However, data decomposition algorithms require expensive merging steps (O(n) time complexity) which
are non-trivial to implement efficiently. Our work does not require explicit data decomposition.

This paper explores the concurrency available in processing each event in Voronoi diagram construction and
uses directives to make an existing implementation of Fortune’s algorithm faster with minimal efforts using
compiler directives. OpenMP is an application programming interface which enables us to parallelize existing C,
C++ or Fortran code by just adding compiler directives (#pragma) to it. The compiler takes the directives as hints
for potential ways to inject parallelism in the sequential code. Directives based parallelization can be targeted at
multicore CPUs, GPUs or a combination of both. Adding directives should not affect the correctness of the
results produced, although the order in which results are produced might vary due to concurrency. Compiler
directives based parallelization is more maintainable and performance portable to different multicore
architectures and removes the hassle of having to change the parallelized code according to changes in

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude1-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude1-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude1-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude1-p4-paude-large.gif

multicore architecture. Even though, OpenMP is good for regular parallelism, here we are trying to extract
irregular and dynamic parallelism exposed by our modified Fortune’s algorithm.

SECTION II. Fortune’s Algorithm
Fortune’s algorithm is a planesweep algorithm for computing Voronoi Diagram in O(nlogn) time with O(n) space
[9]. Fortune presented a transformation that could be used to compute Voronoi diagrams with a sweepline
technique. [9]

Fig. 2. A snapshot of the algorithm showing circle events, a vertical sweep line and beachline made up of arcs.
(Best viewed in color)

In Figure 2, the dark grey dots are the site points. The blue dots are the Voronoi vertices and lines connecting
the blue dots are the Voronoi edges. The vertical blue line is the sweepline. The green and red arcs form the
beachline structure at the sweepline position. The light grey circles are the circle events. As the sweepline
reaches a site point, an arc/parabola corresponding to it is created which will grow as the sweepline progresses
and is clipped by neighbouring arcs or new arc ahead of it. The collection of active arcs is the beachline.

Algorithm 1 is a simplified algorithmic description of the implementation of Fortune’s Algorithm. The focus of
the description here is to show the flow of the algorithm so that the possibilities and limitations to a directive
based approach can be explored. This algorithmic description here is necessary to understand the flow of
execution and interdependencies among the variables that are key to any directive-based parallelization.

Algorithm 1 Fortune’s Algorithm (Horizontal Sweep)

1: P ← load all points
2: Initialize a bounding box with offset
3: Initialize beachline B

// B is of type arc

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude2-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude2-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude2-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude2-p4-paude-large.gif

4: Initialize output O
// O is a collection of edges of the partitioned regions

5: Initialize events priority queue
// event with minimum x-coordinate is at the top

6: Sort P in ascending order by x-coordinate
7: for each p in P do
8: while (events.top.x <= p.x) do
9: ProcessEvent(events.deque())
10: end while
11: ProcessPoint(p)
12: end for
13: ProcessRemainingEvents()
14: FinishEdges()

In the event data structure, x is the maximum x-location a circle event can affect and it introduces a event
processing there. So, x = p.x + radiusOfTheCircle.

Listing 1. Data Structure for Event

struct event {
var x ;
point p ;
arc ∗ a;

}

Algorithm 2 ProcessEvent(event e)

1: Input event e
2: if (e.valid) then
3: Begin a new Segment s at e.x
4: Remove e.a from beachline B
5: Complete segments e.a.s0 and e.a.s1
6: // Check circle events

CheckCircleEvent(e.a.prev, e.x)
CheckCircleEvent(e.a.next, e.x)

7: end if

A. Parallelizing Fortune’s Algorithm
We start by trying to find opportunities in the algorithm where compiler directives can be inserted for
parallelization. The most obvious choice would be to parallelize the loops. Loop parallelization using directives is
the easiest way to parallelize and usually has very less overheads. Furthermore, internal loops inside nested
loops can also be parallelized.

In Algorithm 1, the for-loops and while loops cannot be directly parallelized due to interdependencies and
memory side-effects. Algorithm 3 and Algorithm 2 can not run concurrently due to the interdependence of site
events and the circle events.

In Algorithm 2, since entirety of its execution is based on a conditional, we need to determine the possibility of
parallelizing this portion if it gets executed. Here, line 4 is dependent on line 3 because we need the segment s

to remove e.a from beachline B. However, excluding this, the two operations in line 5 and the two operations in
line 6 can be parallelized to run concurrently. Completing the two segments in line 5 does not affect any other
operations that could happen here concurrently. However the two circle events check in line 6 can lead to new
events being added, but since these events are just added and not used elsewhere, we can put adding events
part of the code inside critical sections and still parallelize line 6. So, in overall we can have five sections that run
in parallel here - one section would comprise of lines 3 and 4, another two sections would comprise of
completing each segment in line 5 and the other two sections would comprise of the two circle events checks in
line 6.

Algorithm 3 ProcessPoint(point p)

1: Input point p
2: for arc i in beachline B do
3: if intersects(p,i) then
4: Add new arc at p.x to beachline B
5: Connect new arc to prev and next segments of i

CheckCircleEvent(i, p.x)
CheckCircleEvent(i.prev, p.x)
CheckCircleEvent(i.next, p.x)

6: return
7: end if
8: end for
9: arc I ← last arc in B
10: Insert segment between p and i

Algorithm 3 is even more complicated to parallelize because it has loops, conditionals inside loop and early exits
inside those conditionals. An event is rendered invalid if the arc associated with that event is no longer in the
beachline.

The outermost loop is searching for an arc corresponding to the new event. This is done by performing an
exhaustive search looking for a single instance for which the search criterion is fulfilled. Then a series of
operations is performed on the resultant instance if it was found. If a resultant instance was found then not only
the loop is returned but the whole procedure is exited. We can start by separating the search and the execution
of the result of the search. So, we parallelize the loop in step 2 to find an arc i which satisfies the if-condition and
remove the execution part below. One problem here is that if such an arc is found by sequential iteration early
on, parallelizing it might just give us unessential overhead. To remedy this, we will convert this search loop into
a chunked iterative exhaustive search loop by providing hints to the compiler that there might be a loop
cancellation before each chunked iteration. This transformation makes it suitable for utilizing OpenMP parallel
loop cancellation feature as shown line 5 and line 6 of Algorithm 4.

Concurrent Processing of Circle Events
Another problem with Algorithm 3 is that, a sequential search would have terminated after finding the first
instance for which the search criteria would have been satisfied but during a concurrent chunked iteration,
there might be multiple instances for which the search criteria has been satisfied. For correctness with regards
to the sequential code, we can use a minimum reduction to make certain that the first instance is reported. At
this point we will either have an arc i that satisfies the conditional or not and the loop will be exited but the
procedure will not have been terminated. We can put this conditional of whether an arc i has been found in an
if-statement with its else-part as lines 10-11. If an arc i has been found then we can execute the lines 4-6 with i
and if not then we execute lines 10-11. This removes any early procedure terminating conditions from Algorithm

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude.al3-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude.al3-p4-paude-large.gif

3. Then lines 4-6 that has been moved out of the loop and put inside this new conditional statement can now be
explored for further parallelism. Lines 4-5 need to be executed sequentially because line 5 is dependent on the
arc created in line 4. However, as shown in Algorithm 4, the three parts of line 6 can be parallelized to run
concurrently even along with lines 4-5. Again, here the circle events check can lead to new events being added,
but since these events are just added and not used elsewhere, we can put adding events part of the code inside
critical sections and still parallelize. However, we will not be able to parallelize lines 10-11 of Algorithm 3
because its execution needs to be sequential. So, in this portion we are able to parallelize the search phase and
lines 4-6 after they have been moved outside. As shown by Algorithm 4, Lines 4-6 from Algorithm 3 will have
four sections - first section would comprise of lines 4-5 and the other three sections would comprise each of the
three parts of line 6.

SECTION III. Results
An OpenMP implementation of code was created using the analysis in section II-A and executed on data with
varying number of sites. The skeleton for the sequential C++ code used was inspired by the work of Matt
Brubeck [10]. The machine used to run the OpenMP code has the Intel Xeon E5-2695 multi-core CPU with 45MB
cache and base frequency of 2.10GHz.

TABLE I Timings of Running the Code in Sequential and With OpenMP

Sites Sequential OpenMP SpeedUp
2k 0.456s 0.165s 2.761
4k 0.758s 0.419s 1.809
8k 2.06s 0.995s 2.070
16k 6.496s 2.748s 2.364
32k 13.748s 5.162s 2.663
64k 38.847s 18.029s 2.155
128k 84.396s 39.305s 2.147

Figure 3 shows the execution time for different number of site events. Even with the overhead of parallelization,
the OpenMP version beats its sequential counterpart. We can see from Table I that we get almost above 2x
speedup using upto four threads. The distribution of points affects the runtime of our algorithm and we have
observed that having some types of distribution of points improves the performance of our algorithm. The
speedup varies for different number of sites because the time taken to search for an arc corresponding to the
event being processed is variable. In Algorithm 4, there are two code blocks which have been parallelized using
OpenMP. There is a sequential dependency between block 1 (lines 2-7) and block 2 (lines 8-18). Even though the
for-loop is highly parallelizable, the second block with OpenMP sections can only use few threads. In the worst
case scenario, the execution time for block 1 depends on the number of active arcs in the beachline but in
average case, the intersection test (line 3) can finish much earlier. We have found that beyond four threads
there is a degradation in efficiency.

Algorithm 4 ProcessPoint(point p) with directives

1: Input point p, initialize bool doesIntersect = False

#pragma omp parallel for num threads(threadCount)
2: for arc i in beachline B do

J ← index of arc i in beachline B
3: if intersects(p,i) then

4: ind = j
5: doesIntersect = True

#pragma omp cancel for
6: end if

#pragma omp cancellation point for
7: end for

8: if (doesIntersect == True) then
9: arc I ← B[ind]

#pragma omp parallel sections
{

#pragma omp section
{

10: Add new arc at p.x to beachline B
11: Connect new arc to prev and next segments of i

}
#pragma omp section

12: CheckCircleEvent(i, p.x)
#pragma omp section

13: CheckCircleEvent(i.prev, p.x)
#pragma omp section

14: CheckCircleEvent(i.next, p.x)
 }
15: else
16: arc I ← last arc in B
17: Insert segment between p and i
18: end if

SECTION IV. Conclusion
Our experiments and design space exploration in directives-based parallelization of Fortune’s algorithm has
yielded a shared memory implementation that gives around 2x speedup compared to the sequential version. A
four threaded parallelization is extremely useful for applications that run on personal devices with quad-core
processors or on cloud instances where the most common instance of compute nodes usually has four cores.
We have experimentally demonstrated a novel way of extracting irregular and dynamic parallelism inherent at
each event of the algorithm. Moreover, our new method decreases the run-time of the algorithm on data sets of
different size.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude.al4-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude.al4-p4-paude-large.gif

Fig. 3. Sequential vs OpenMP timings

ACKNOWLEDGEMENTS
This work is partly supported by the National Science Foundation Grant No. 1756000.

References
1. K. Wong and H. A. Muller, "An efficient implementation of fortune’s plane-sweep algorithm for voronoi

diagrams", 1991.
2. F. P. Preparata and M. I. Shamos, Computational geometry: an introduction, Springer Science & Business

Media, 2012.
3. A. Paudel and S. Puri, "Openacc based gpu parallelization of plane sweep algorithm for geometric

intersection", Fifth Workshop on Accelerator Programming Using Directives co-located with the
International Conference for High Performance Computing Networking Storage and Analysis (SC18),
2018.

4. S. Puri and S. K. Prasad, "Output-sensitive parallel algorithm for polygon clipping", Parallel Processing
(ICPP) 2014 43rd International Conference on, pp. 241-250, 2014.

5. S. Puri, A. Paudel and S. K. Prasad, "MPI-vector-IO: Parallel I/O and Partitioning for Geospatial Vector
Data", Proceedings of the 47th International Conference on Parallel Processing ICPP, pp. 13, 2018.

6. S. G. Akl and K. A. Lyons, Parallel computational geometry, Prentice-Hall, Inc., 1993.
7. M. T. Goodrich, M. R. Ghouse and J. Bright, "Sweep methods for parallel computational geometry",

Algorithmica, vol. 15, no. 2, pp. 126-153, 1996.
8. M. d. Berg, O. Cheong, M. v. Kreveld and M. Overmars, Computational geometry: algorithms and

applications, Springer-Verlag TELOS, 2008.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude4-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude4-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude4-p4-paude-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8746989/8753824/8754258/paude4-p4-paude-large.gif

9. S. Fortune, "A sweepline algorithm for voronoi diagrams", Algorithmica, vol. 2, pp. 153-174, Nov 1987.
10. 2002, [online] Available: https://www.cs.hmc.edu/mbrubeck-/voronoi.html.

	Parallelization of Plane Sweep Based Voronoi Construction with Compiler Directives
	SECTION I. Introduction
	SECTION II. Fortune’s Algorithm
	A. Parallelizing Fortune’s Algorithm
	Concurrent Processing of Circle Events

	SECTION III. Results
	SECTION IV. Conclusion
	ACKNOWLEDGEMENTS
	References

