560 research outputs found

    The Parallel Meaning Bank: Towards a Multilingual Corpus of Translations Annotated with Compositional Meaning Representations

    Full text link
    The Parallel Meaning Bank is a corpus of translations annotated with shared, formal meaning representations comprising over 11 million words divided over four languages (English, German, Italian, and Dutch). Our approach is based on cross-lingual projection: automatically produced (and manually corrected) semantic annotations for English sentences are mapped onto their word-aligned translations, assuming that the translations are meaning-preserving. The semantic annotation consists of five main steps: (i) segmentation of the text in sentences and lexical items; (ii) syntactic parsing with Combinatory Categorial Grammar; (iii) universal semantic tagging; (iv) symbolization; and (v) compositional semantic analysis based on Discourse Representation Theory. These steps are performed using statistical models trained in a semi-supervised manner. The employed annotation models are all language-neutral. Our first results are promising.Comment: To appear at EACL 201

    Evaluating Scoped Meaning Representations

    Get PDF
    Semantic parsing offers many opportunities to improve natural language understanding. We present a semantically annotated parallel corpus for English, German, Italian, and Dutch where sentences are aligned with scoped meaning representations in order to capture the semantics of negation, modals, quantification, and presupposition triggers. The semantic formalism is based on Discourse Representation Theory, but concepts are represented by WordNet synsets and thematic roles by VerbNet relations. Translating scoped meaning representations to sets of clauses enables us to compare them for the purpose of semantic parser evaluation and checking translations. This is done by computing precision and recall on matching clauses, in a similar way as is done for Abstract Meaning Representations. We show that our matching tool for evaluating scoped meaning representations is both accurate and efficient. Applying this matching tool to three baseline semantic parsers yields F-scores between 43% and 54%. A pilot study is performed to automatically find changes in meaning by comparing meaning representations of translations. This comparison turns out to be an additional way of (i) finding annotation mistakes and (ii) finding instances where our semantic analysis needs to be improved.Comment: Camera-ready for LREC 201

    Towards Universal Semantic Tagging

    Get PDF
    The paper proposes the task of universal semantic tagging---tagging word tokens with language-neutral, semantically informative tags. We argue that the task, with its independent nature, contributes to better semantic analysis for wide-coverage multilingual text. We present the initial version of the semantic tagset and show that (a) the tags provide semantically fine-grained information, and (b) they are suitable for cross-lingual semantic parsing. An application of the semantic tagging in the Parallel Meaning Bank supports both of these points as the tags contribute to formal lexical semantics and their cross-lingual projection. As a part of the application, we annotate a small corpus with the semantic tags and present new baseline result for universal semantic tagging.Comment: 9 pages, International Conference on Computational Semantics (IWCS

    Neural Semantic Parsing by Character-based Translation: Experiments with Abstract Meaning Representations

    Get PDF
    We evaluate the character-level translation method for neural semantic parsing on a large corpus of sentences annotated with Abstract Meaning Representations (AMRs). Using a sequence-to-sequence model, and some trivial preprocessing and postprocessing of AMRs, we obtain a baseline accuracy of 53.1 (F-score on AMR-triples). We examine five different approaches to improve this baseline result: (i) reordering AMR branches to match the word order of the input sentence increases performance to 58.3; (ii) adding part-of-speech tags (automatically produced) to the input shows improvement as well (57.2); (iii) So does the introduction of super characters (conflating frequent sequences of characters to a single character), reaching 57.4; (iv) optimizing the training process by using pre-training and averaging a set of models increases performance to 58.7; (v) adding silver-standard training data obtained by an off-the-shelf parser yields the biggest improvement, resulting in an F-score of 64.0. Combining all five techniques leads to an F-score of 71.0 on holdout data, which is state-of-the-art in AMR parsing. This is remarkable because of the relative simplicity of the approach.Comment: Camera ready for CLIN 2017 journa

    Feasibility report: Delivering case-study based learning using artificial intelligence and gaming technologies

    Get PDF
    This document describes an investigation into the technical feasibility of a game to support learning based on case studies. Information systems students using the game will conduct fact-finding interviews with virtual characters. We survey relevant technologies in computational linguistics and games. We assess the applicability of the various approaches and propose an architecture for the game based on existing techniques. We propose a phased development plan for the development of the game

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201

    The Meaning Factory at SemEval-2017 Task 9: Producing AMRs with Neural Semantic Parsing

    Get PDF
    We evaluate a semantic parser based on a character-based sequence-to-sequence model in the context of the SemEval-2017 shared task on semantic parsing for AMRs. With data augmentation, super characters, and POS-tagging we gain major improvements in performance compared to a baseline character-level model. Although we improve on previous character-based neural semantic parsing models, the overall accuracy is still lower than a state-of-the-art AMR parser. An ensemble combining our neural semantic parser with an existing, traditional parser, yields a small gain in performance.Comment: To appear in Proceedings of SemEval, 2017 (camera-ready

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio
    • …
    corecore