201,605 research outputs found

    Axiomatic Characterization of Data-Driven Influence Measures for Classification

    Full text link
    We study the following problem: given a labeled dataset and a specific datapoint x, how did the i-th feature influence the classification for x? We identify a family of numerical influence measures - functions that, given a datapoint x, assign a numeric value phi_i(x) to every feature i, corresponding to how altering i's value would influence the outcome for x. This family, which we term monotone influence measures (MIM), is uniquely derived from a set of desirable properties, or axioms. The MIM family constitutes a provably sound methodology for measuring feature influence in classification domains; the values generated by MIM are based on the dataset alone, and do not make any queries to the classifier. While this requirement naturally limits the scope of our framework, we demonstrate its effectiveness on data

    The Grammar of Interactive Explanatory Model Analysis

    Full text link
    The growing need for in-depth analysis of predictive models leads to a series of new methods for explaining their local and global properties. Which of these methods is the best? It turns out that this is an ill-posed question. One cannot sufficiently explain a black-box machine learning model using a single method that gives only one perspective. Isolated explanations are prone to misunderstanding, which inevitably leads to wrong or simplistic reasoning. This problem is known as the Rashomon effect and refers to diverse, even contradictory interpretations of the same phenomenon. Surprisingly, the majority of methods developed for explainable machine learning focus on a single aspect of the model behavior. In contrast, we showcase the problem of explainability as an interactive and sequential analysis of a model. This paper presents how different Explanatory Model Analysis (EMA) methods complement each other and why it is essential to juxtapose them together. The introduced process of Interactive EMA (IEMA) derives from the algorithmic side of explainable machine learning and aims to embrace ideas developed in cognitive sciences. We formalize the grammar of IEMA to describe potential human-model dialogues. IEMA is implemented in the human-centered framework that adopts interactivity, customizability and automation as its main traits. Combined, these methods enhance the responsible approach to predictive modeling.Comment: 17 pages, 10 figures, 3 table

    The Intuitive Appeal of Explainable Machines

    Get PDF
    Algorithmic decision-making has become synonymous with inexplicable decision-making, but what makes algorithms so difficult to explain? This Article examines what sets machine learning apart from other ways of developing rules for decision-making and the problem these properties pose for explanation. We show that machine learning models can be both inscrutable and nonintuitive and that these are related, but distinct, properties. Calls for explanation have treated these problems as one and the same, but disentangling the two reveals that they demand very different responses. Dealing with inscrutability requires providing a sensible description of the rules; addressing nonintuitiveness requires providing a satisfying explanation for why the rules are what they are. Existing laws like the Fair Credit Reporting Act (FCRA), the Equal Credit Opportunity Act (ECOA), and the General Data Protection Regulation (GDPR), as well as techniques within machine learning, are focused almost entirely on the problem of inscrutability. While such techniques could allow a machine learning system to comply with existing law, doing so may not help if the goal is to assess whether the basis for decision-making is normatively defensible. In most cases, intuition serves as the unacknowledged bridge between a descriptive account and a normative evaluation. But because machine learning is often valued for its ability to uncover statistical relationships that defy intuition, relying on intuition is not a satisfying approach. This Article thus argues for other mechanisms for normative evaluation. To know why the rules are what they are, one must seek explanations of the process behind a model’s development, not just explanations of the model itself

    Explaining Data-Driven Decisions made by AI Systems: The Counterfactual Approach

    Full text link
    We examine counterfactual explanations for explaining the decisions made by model-based AI systems. The counterfactual approach we consider defines an explanation as a set of the system's data inputs that causally drives the decision (i.e., changing the inputs in the set changes the decision) and is irreducible (i.e., changing any subset of the inputs does not change the decision). We (1) demonstrate how this framework may be used to provide explanations for decisions made by general, data-driven AI systems that may incorporate features with arbitrary data types and multiple predictive models, and (2) propose a heuristic procedure to find the most useful explanations depending on the context. We then contrast counterfactual explanations with methods that explain model predictions by weighting features according to their importance (e.g., SHAP, LIME) and present two fundamental reasons why we should carefully consider whether importance-weight explanations are well-suited to explain system decisions. Specifically, we show that (i) features that have a large importance weight for a model prediction may not affect the corresponding decision, and (ii) importance weights are insufficient to communicate whether and how features influence decisions. We demonstrate this with several concise examples and three detailed case studies that compare the counterfactual approach with SHAP to illustrate various conditions under which counterfactual explanations explain data-driven decisions better than importance weights

    Slave to the Algorithm? Why a \u27Right to an Explanation\u27 Is Probably Not the Remedy You Are Looking For

    Get PDF
    Algorithms, particularly machine learning (ML) algorithms, are increasingly important to individuals’ lives, but have caused a range of concerns revolving mainly around unfairness, discrimination and opacity. Transparency in the form of a “right to an explanation” has emerged as a compellingly attractive remedy since it intuitively promises to open the algorithmic “black box” to promote challenge, redress, and hopefully heightened accountability. Amidst the general furore over algorithmic bias we describe, any remedy in a storm has looked attractive. However, we argue that a right to an explanation in the EU General Data Protection Regulation (GDPR) is unlikely to present a complete remedy to algorithmic harms, particularly in some of the core “algorithmic war stories” that have shaped recent attitudes in this domain. Firstly, the law is restrictive, unclear, or even paradoxical concerning when any explanation-related right can be triggered. Secondly, even navigating this, the legal conception of explanations as “meaningful information about the logic of processing” may not be provided by the kind of ML “explanations” computer scientists have developed, partially in response. ML explanations are restricted both by the type of explanation sought, the dimensionality of the domain and the type of user seeking an explanation. However, “subject-centric explanations (SCEs) focussing on particular regions of a model around a query show promise for interactive exploration, as do explanation systems based on learning a model from outside rather than taking it apart (pedagogical versus decompositional explanations) in dodging developers\u27 worries of intellectual property or trade secrets disclosure. Based on our analysis, we fear that the search for a “right to an explanation” in the GDPR may be at best distracting, and at worst nurture a new kind of “transparency fallacy.” But all is not lost. We argue that other parts of the GDPR related (i) to the right to erasure ( right to be forgotten ) and the right to data portability; and (ii) to privacy by design, Data Protection Impact Assessments and certification and privacy seals, may have the seeds we can use to make algorithms more responsible, explicable, and human-centered
    • …
    corecore