11,580 research outputs found

    Motivational Social Visualizations for Personalized E-Learning

    Get PDF
    A large number of educational resources is now available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produces at least two problems: how to help students find the most appropriate resources, and how to engage them into using these resources and benefiting from them. Personalized and social learning have been suggested as potential methods for addressing these problems. Our work presented in this paper attempts to combine the ideas of personalized and social learning. We introduce Progressor + , an innovative Web-based interface that helps students find the most relevant resources in a large collection of self-assessment questions and programming examples. We also present the results of a classroom study of the Progressor +  in an undergraduate class. The data revealed the motivational impact of the personalized social guidance provided by the system in the target context. The interface encouraged students to explore more educational resources and motivated them to do some work ahead of the course schedule. The increase in diversity of explored content resulted in improving students’ problem solving success. A deeper analysis of the social guidance mechanism revealed that it is based on the leading behavior of the strong students, who discovered the most relevant resources and created trails for weaker students to follow. The study results also demonstrate that students were more engaged with the system: they spent more time in working with self-assessment questions and annotated examples, attempted more questions, and achieved higher success rates in answering them

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    Context-Aware Mobile Augmented Reality Visualization in Construction Engineering Education

    Get PDF
    Recent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly implemented, instructional technology can enhance student engagement and the quality of learning. Therefore, the main goal of this research is to implement and assess effectiveness of augmented reality (AR)-based pedagogical tools on student learning. For this purpose, two sets of experiments were designed and implemented in two different construction and civil engineering undergraduate level courses at the University of Central Florida (UCF). The first experiment was designed to systematically assess the effectiveness of a context-aware mobile AR tool (CAM-ART) in real classroom-scale environment. This tool was used to enhance traditional lecture-based instruction and information delivery by augmenting the contents of an ordinary textbook using computer-generated three-dimensional (3D) objects and other virtual multimedia (e.g. sound, video, graphs). The experiment conducted on two separate control and test groups and pre- and post- performance data as well as student perception of using CAM-ART was collected through several feedback questionnaires. In the second experiment, a building design and assembly task competition was designed and conducted using a mobile AR platform. The pedagogical value of mobile AR-based instruction and information delivery to student learning in a large-scale classroom setting was also assessed and investigated. Similar to the first experiment, students in this experiment were divided into two control and test groups. Students\u27 performance data as well as their feedback, suggestions, and workload were systematically collected and analyzed. Data analysis showed that the mobile AR framework had a measurable and positive impact on students\u27 learning. In particular, it was found that students in the test group (who used the AR tool) performed slightly better with respect to certain measures and spent more time on collaboration, communication, and exchanging ideas in both experiments. Overall, students ranked the effectiveness of the AR tool very high and stated that it has a good potential to reform traditional teaching methods

    Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy

    Get PDF
    The thematic evolution of research on Mobile Information Literacy between 2006 and 2019 in the field of Information Literacy, learning and mobile technologies is analysed in an international context. For this purpose, the relevant bibliographic references from five databases (ERIC, LISA, LISTA, Scopus and WOS) were retrieved. To systematize the keywords, high dimensionality is reduced by means of a term-based process. Fields, topics, sub-topics and top terms are defined. The main top-terms and their relationships are analysed applying the fractional counting methodology using VOSViewer software. Fifteen major themes were set, which were grouped into six clusters to identify the main thematic trends during the period under review: IL and e-learning, Mobile devices and competencies, Ethics, Library and e-resources, Educational technology and Technological environment. The convergence of IL and e-learning, the growth of e-literacy, the increasing relationship between mobile devices and information competencies, as well as that of libraries and e-resources, are thus detected. In conclusion, there is evidence of a growing interdisciplinarity in the scientific publications on Mobile Information Literacy, which interrelates the studies of information and digital literacy with e-learning and mobile technologies.This research is part of the R&D project “Innovation and training in the information competencies of university lecturers and students in the social sciences. Model for the development of programs in the mobile environment” (CSO2016-80147-R), funded by the Spanish Ministry of Economy, Industry and Competitiveness

    Bibliographic and Text Analysis of Research on Implementation of the Internet of Things to Support Education

    Get PDF
    The Internet of Things (IoT) has pervaded practically all aspects of our lives. In this exploratory study, we survey its applications in the field of education. It is evident that technology in general, and, in particular IoT, has been increasingly altering the educational landscape. The goal of this paper is to review the academic literature on IoT applications in education to provide an understanding of the transformation that is underway. Using topic modeling and keyword co-occurrence analysis techniques, we identified five dominant clusters of research. Our findings demonstrate that IoT research in education has mainly focused on the technical aspects; however, the social aspects remain largely unexplored. In addition to providing an overview of IoT research on education, this paper offers suggestions for future research

    Adaptive learning: a cluster-based literature review (2011-2022)

    Get PDF
    Adaptive learning is a personalized instruction system that adjusts to the needs, preferences, and progress of learners. This paper reviews the current and future developments of adaptive learning in higher education, especially in relation to the digital education strategy of the European Union. It also uses a cluster analysis framework to explore the main themes and their relationships in the academic literature on adaptive learning. The paper highlights the potential of emerging technologies such as AI, eye-tracking, and physiological measurements to improve the personalization and effectiveness of adaptive learning systems. It presents various methods, algorithms, and prototypes that incorporate learning styles into adaptive learning. It also stresses the importance of continuous professional development in e-learning, media literacy, computer security, and andragogy for teachers who use adaptive learning systems. The paper concludes that adaptive learning can promote creativity, innovation, and lifelong learning in Ukrainian higher education, but it also acknowledges the challenges and suggests further research to assess its impact

    Scaling up and zooming in: Big data and personalization in language learning

    Get PDF
    corecore