449,594 research outputs found

    Open multi-technology building energy management system

    Get PDF
    Energy Efficiency is one of the goals of the Smart Building initiatives. This paper presents an Open Energy Management System which consists of an ontology-based multi-technology platform and a wireless transducer network using 6LoWPAN communication technology. The system allows the integration of several building automation protocols and eases the development of different kind of services to make use of them. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM

    Supporting Decentralised Energy Management through Smart Monitoring Systems in Public Authorities

    Get PDF
    open access articleEnergy infrastructure in large, multi-site organisations such as municipal authorities, is often heterogeneous in terms of factors such as age and complexity of the technology deployed. Responsibility for day-to-day operation and maintenance of this infrastructure is typically dispersed across large numbers of individuals and impacts on even larger numbers of building users. Yet, the diverse population of stakeholders with an interest in the operation and development of this dynamic infrastructure typically have little or no visibility of energy and water usage. This paper explores the integration of utility metering data into urban management processes via the deployment of an accessible “smart meter” monitoring system. The system is deployed in three public authorities and the impact of the system is investigated based on the triangulation of evidence from semi-structured interviews and case studies. The research is framed from three perspectives: the bottom-up micro-level (individual and local), the top-down macro-level (organisation-wide and strategic) and intermediate meso-level (community-focused and operation). Evidence shows that improved communication across these levels enables a decentralisation and joining-up of energy management. Evidence points to the importance of reducing the cognitive load associated with monitoring systems. Better access to information supports more local autonomy, easier communication and cooperation between stakeholders and fosters the conditions necessary for adaptive practices to emerge

    A normative approach to multi-agent systems for intelligent buildings

    Get PDF
    Building Management Systems (BMS) are widely adopted in modern buildings around the world in order to provide high-quality building services, and reduce the running cost of the building. However, most BMS are functionality-oriented and do not consider user personalization. The aim of this research is to capture and represent building management rules using organizational semiotics methods. We implement Semantic Analysis, which determines semantic units in building management and their relationship patterns of behaviour, and Norm Analysis, which extracts and specifies the norms that establish how and when these management actions occur. Finally, we propose a multi-agent framework for norm based building management. This framework contributes to the design domain of intelligent building management system by defining a set of behaviour patterns, and the norms that govern the real-time behaviour in a building

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    An ARTMAP-incorporated Multi-Agent System for Building Intelligent Heat Management

    Get PDF
    This paper presents an ARTMAP-incorporated multi-agent system (MAS) for building heat management, which aims to maintain the desired space temperature defined by the building occupants (thermal comfort management) and improve energy efficiency by intelligently controlling the energy flow and usage in the building (building energy control). Existing MAS typically uses rule-based approaches to describe the behaviours and the processes of its agents, and the rules are fixed. The incorporation of artificial neural network (ANN) techniques to the agents can provide for the required online learning and adaptation capabilities. A three-layer MAS is proposed for building heat management and ARTMAP is incorporated into the agents so as to facilitate online learning and adaptation capabilities. Simulation results demonstrate that ARTMAP incorporated MAS provides better (automated) energy control and thermal comfort management for a building environment in comparison to its existing rule-based MAS approach
    corecore