5 research outputs found

    A wideband frequency beam-scanning antenna array for millimeter-wave industrial wireless sensing applications

    Get PDF
    The 57–71 GHz millimeter-wave (mmWave) Industrial, Scientific, and Medical (ISM) band holds significant potential for enhancing the performance of next-generation industrial wireless applications. This paper first presents the design and analysis of a compact and high-performance 8-element series-fed frequency beam-scanning array designed to cover the entire 21.87% fractional bandwidth of the 57–71 GHz ISM band. Using this as a subarray, a hybrid parallel-series feed topology is designed to construct a 64-element (8 × 8) planar array with high-gain directional beams. The planar array provides a peak measured gain of 20.12 dBi at 64 GHz and maintains a flat gain of over 19.23 dBi throughout the band, with a 1 dB gain bandwidth of 13 GHz. Its narrow directional beams provide an average half-power beamwidth of 9.7° and 11.78° in the elevation and azimuth planes, facilitating point-to-point mmWave connectivity and high-resolution beam scanning. The inherent phase variation of the series-fed topology is employed to produce a beamscanning range of 40° within the 57–71 GHz band, with a scan loss of less than 1 dB. The proposed array is a low-cost, and reproducible solution for seamless integration with V-band mmWave equipment, as elucidated through practical demonstration frameworks using mmWave power sensor and EK1HMC6350 evaluation board. The proposed array is well-suited for emerging industrial wireless sensing and imaging applications, and mmWave frequency scanning radars. Its versatility extends to various 60 GHz protocols such as IEEE 802.11ay, IEEE 802.11ad, IEEE 802.15.3c/d, WirelessHD, and other customized industrial protocols such as WirelessHP

    Étude de la fiabilité des communications dans un réseau de capteurs sans-fils appliqué aux mines souterraines

    Get PDF
    Étude de la fiabilité des communications dans un réseau de capteurs sans-fils appliqué aux mines souterraines Certes, l’aspect sécurité est le plus préoccupant du travail dans les mines souterraines. Aujourd’hui, plusieurs équipements hautement technologiques sont utilisés dans la mine. Parmi ces équipements, nous pouvons distinguer les outils de communications. En effet, dans une mine bien équipée, plusieurs sortes de réseaux informatiques sont déployés à des fins de sécurité et de supervision. Dans ce contexte, les réseaux de capteurs sans-fils (RCSF) sont de plus en plus utilisés dans la mine. Cela s’explique par le fait que ce type de réseau orienté application apporte plusieurs avantages par rapport aux réseaux classiques à savoir le caractère sans-fils, le faible coût, la tolérance à la défaillance et la facilité de déploiement dans les zones à haut risque. Cependant, les RCSF imposent quelques limitations qui ne sont pas considérées dans les réseaux classiques dont notamment la consommation d’énergie et la gestion des informations. L'enjeu de l’utilisation des RCSF dans la mine est de mettre en place des communications efficaces énergétiquement qui tiennent compte des différentes contraintes imposées par les équipements hétérogènes. Dans cette optique, le standard IEEE 802.15.4 apparaît comme un standard de fait pour les RCSF. Le succès de cette norme est visible dans le fait qu’aujourd'hui, il y a plus de dix couches physiques différentes proposées comme extension à la norme IEEE 802.15.4. C’est dans ce contexte que se positionne l’objectif de notre travail. Il s’agit dans notre projet de faire l’étude des performances du standard IEEE 802.15.4 en comparaison avec l’extension IEEE 802.15.4g. L’étude comparative des standards IEEE 802.15.4/4g par simulation et par un banc d’essai a fait l’objet de nos travaux. Les résultats de simulation ont été démontrés pour différent scénarios d’utilisation

    Hybrid optical fiber-wireless communication to support tactile internet

    Get PDF
    5G technologies are systems that will set to change the way people, devices and machines connect. This generation of mobile services provide connection in just one click. The advanced 5G infrastructure, defined as “ubiquitous ultra-broadband network supporting future Internet”, represents a revolution in the telecommunications field. It will enable new secure and reliable services to everyone and everything with ultra-low latency. “Full Immersive Experience”, enriched by “Context Information” and “Anything as a Service” are the main drivers for a substantial adoption of the fifth generation networks [1]. The technical challenges that must be taken into account in the design of the 5G system are many and unprecedented. Therefore,5G is expected to be about 10 times faster than LTE-4G, in addition, it is projected that this network will have100-1000 times higher system capacity, user data rates in the order of Gbps everywhere, 10-100 higher number of connected devices per area, latency in the order of 1 millisecond, and 10 times longer battery life for devices. Due to all these technological changes, for years, researchers, suppliers and manufacturers around the world have studied this new network. In order to transform the user's wireless experience and be able to offer fast generalized connectivity anytime, anywhere, to any device.[2]. All this requires an enabler in the new approach of radio access networks, which could be hybrid optical Fiber-Wireless communications. “Photonics technology has been recognized by the European Union as a Key Enabling Technology (KET), which is a technology that enables a market, many times larger than the market of technology itself”. Photonic techniques have become key enablers to unlock future broadband wireless communications with terabit data rates in order to support the current trends of mobile data traffic[3]. The aim of this thesis is to conceive experimentally and validate 1 millisecond latency hybrid optical Fiber-Wireless access links support for tactile Internet taking into account the system requirements. For this purpose, first a review about the implementation of high-speed data links at 75-110 GHz band with low latency was made. Likewise, this work summarizes the components of hybrid optical Fiber-Wireless communication in W- Band. Second, measurements of the delay contribution from individual elements in the W -Band hybrid system were made. In addition, the main contribution was to develop a procedure for measuring latency physically using software defined radio (SDR) and estimating the overall system latency. In this procedure, potential sources of delay can be identified in current high-data-rate hybrid optical-RF communication systems. After knowing how to measure latency in a hybrid optical Fiber-Wireless system, the following objectives were developed: to test an appropriate multiplexing scheme such as Orthogonal Frequency Division Multiplexing (OFDM), and Generalized Frequency Division Multiplexing (GFDM), to achieve the lowest latency with improved performance; and to implement WDM (Wavelength Division Multiplexing) to achieve the required low latency.Resumen: Las tecnologías 5G son sistemas de generación de servicios móviles configurados para cambiar la forma en que las personas, los dispositivos y las máquinas se conectan. La infraestructura 5G está definida como una red ubicua de banda ultra-ancha que soportará Internet en el futuro, dicha red representa una revolución en el campo de las telecomunicaciones. Permitirá eficientemente nuevos servicios ultra-confiables, rápidos y seguros, preservando la privacidad y acelerando los servicios críticos para todos y para cada cosa. Estas redes son la evolución del Internet de las cosas, en donde cada una de ellas es tratada como un objeto cognitivo formando sistemas cibernéticos (CPS). La "experiencia de inmersión total", enriquecida con "información de contexto" y "todo como un servicio" son los principales impulsores para una adopción masiva de los nuevos componentes de ésta tecnología y su aceptación del mercado [1]. Se espera que 5G sea aproximadamente 10 veces más rápido que 4G LTE. Por lo tanto, los desafíos técnicos que deben abordarse en el diseño del sistema 5G son muchos y sin precedentes. Actualmente hay varias actividades en todo el mundo para capturar las aplicaciones y los requisitos para 5G, algunas empresas proveedoras de servicio y fabricantes incluso ya han realizado pruebas para la implementación de dichas redes. Algunos de los principales requisitos que demandan estas redes se pueden resumir en: 100-1000 veces más capacidad del sistema, tasas de datos de usuario en el orden de Gbps en todas partes, latencia en el orden de 1 milisegundo, 10-100 veces mayor número de dispositivos conectados por área, 10 veces más duración de la batería para dispositivos. Estos requisitos transformarán dramáticamente la experiencia inalámbrica de un usuario en un sistema 5G al ofrecer conectividad generalizada rápida en cualquier momento, en cualquier lugar, a cualquier dispositivo [2]. Todo esto requiere un habilitador en el nuevo enfoque de las redes de acceso por radio, que podrían ser comunicaciones híbridas de fibra óptica y transmisiones inalámbricas vía radio. La fotónica por su parte ha sido reconocida por la Unión Europea como una Tecnología Clave Habilitadora (KET), una tecnología que permite un mercado que es muchas veces más grande que el mercado de la tecnología en sí. Las técnicas fotónicas combinadas con la generación de microondas en lo que se conoce en su término en inglés como microwave-photonics se han convertido en habilitadores clave para desbloquear futuras comunicaciones inalámbricas de banda ancha con tasas de datos de terabit a fin de soportar las tendencias actuales del tráfico de datos móviles [3]. El objetivo de esta tesis es concebir experimentalmente y validar enlaces de acceso híbridos de fibra óptica-radio, cuya latencia sea de 1 milisegundo con el fin de soportar Internet táctil, el cual es una aplicación de 5G, teniendo en cuenta los requisitos del sistema. Para ello, primero se realizó una investigación sobre la implementación de enlaces de datos con redes híbridas fibra óptica-radio en la banda de 75-110 GHz con baja latencia. Con esto, se analizaron los componentes de la comunicación híbrida fibra ópticaradio en la banda W. En segundo lugar, se realizaron mediciones de los retardos que se generan en cada uno de los elementos en el sistema híbrido de banda W, haciendo la estimación de la latencia general del sistema e identificando fuentes potenciales de demora en los sistemas híbridos de comunicación óptica-RF de alta velocidad de datos. La principal contribución de este trabajo fue el desarrollo de un procedimiento para medir la latencia utilizando radio definida por software (SDR), además de introducir estos sistemas en los enlaces híbridos fibra óptica-radio. Una vez conocido como medir la latencia en un sistema híbrido de fibra óptica-radio, los siguientes objetivos que se desarrollaron fueron: probar un esquema de multiplexación apropiado, como la multiplexación por división de frecuencia ortogonal (OFDM) y la multiplexación por división de frecuencia generalizada (GFDM), para lograr una latencia más baja. A su vez, implementar Multiplexación por división de longitud de onda (WDM) para conocer la latencia y la confiabilidad en cuanto a tasa de error de bits variando la multiplexacion eléctrica y óptica.Doctorad

    Agile intelligent antenna system for industry 4.0 and beyond

    Get PDF
    The next-generation industrial paradigms such as Industry 4.0 and beyond require ultra-high reliability, extremely low latency, high throughput, and fine-grain spatial differentiation for wireless communication, sensing, and control systems. Traditional industrial wired networks suffer from impediments such as expensive installation and maintenance costs, wear and tear, reduced flexibility, and restricted mobility in dynamic industrial environments. Moreover, the conventional sub-6 GHz industrial, scientific, and medical (ISM) wireless bands such as 2.4 and 5 GHz are not able to fully meet the requirements of high bandwidth, high data rate, and low latency for emerging industrial wireless applications. To overcome the aforementioned challenges, the utilization of the 60 GHz millimeter-wave (mmWave) license-free ISM band, spanning from 57–71 GHz, is being considered as a potential solution for advancing next-generation industrial wireless communication and sensing applications, as well as for future technologies of beyond fifth-generation (5G) and sixth-generation (6G). This spectrum offers a large bandwidth of 14 GHz and experiences low spectral congestion. However, its effectiveness is hindered by significant path loss and high signal attenuation caused by oxygen absorption, posing additional challenges to design wideband, high-gain, compact, and cost-effective antenna solutions. This thesis encompasses three antenna design solutions offering high-performance metrics, aimed at next-generation mmWave industrial wireless applications and 6G technologies. The first antenna design is a compact and wideband 64-element planar microstrip array based on a hybrid corporate-series network. The array has the size of 2 cm × 3.5 cm × 0.025 cm and offers -10 dB impedance bandwidth over the entire 57–71 GHz, 1 dB gain bandwidth of 13 GHz from 57–70 GHz, low side lobe levels, and above 70% radiation efficiency in the whole band of interest. The inherent phase shift across the operating frequency in the series-fed antenna elements is leveraged to achieve frequency beamscanning over a scan range of 40° with less than 1 dB scan loss. The second antenna design is a compact, low-cost, high-gain, and planar 16-element linear array using the corporate feed technique. This design provides squintless high directional beamstowards the broadside over 7 GHz of bandwidth (57–64 GHz), and 1 dB gain -bandwidth of more than 3 GHz. This makes it a suitable candidate for industrial fixed wireless access communication scenarios that require large bandwidth and multi-gigabit data rate, such as highdefinition video signal transfer. An antenna with a broad 1 dB gain bandwidth can find various applications across different sectors. Primarily, such an antenna could be utilized in wireless communication systems where reliable and high-speed data transmission is essential. spans across mobile communication networks, enhancing signal strength and coverage for improved data throughput, and seamless connectivity for IIoT applications, enabling efficient data exchange in various settings such as critical industrial automation scenarios. Additionally, in radar systems, a broad 1 dB gain bandwidth antenna could improve target detection and tracking accuracy, enhancing situational awareness in surveillance applications. Overall, the broad frequency coverage provided by the 1 dB gain bandwidth antenna makes it versatile for a wide range of applications requiring robust and reliable wireless communication capabilities. The third proposed antenna solution is the hallmark of this thesis. A fully programmable electronically beamsteerable dynamic metasurface antenna (DMA) is designed and tested for the first time at 60 GHz band, thereby marking a significant milestone in advanced mmWave beamforming metasurface antennas. The 16-element linear DMA is based on novel digital complementary electric inductive capacitive (CELC) metamaterial elements whose radiation states can be dynamically controlled through a high-speed field programmable gate array (FPGA). The smart DMA can synthesize narrow beams, wide beams as well as multiple beams from a single aperture by generating different digital coding combinations. The proposed DMA is a low-cost and low-power smart beamforming antenna applicable to a diverse range of mmWave communication, sensing, and imaging avenues for smart wireless industries and 6G networks with agile beam-switching having a delay of less than 5 ns. The proposed DMA boasts striking features, including compact size, meticulously designed PCB, and software control via binary coding from a high-speed FPGA. Operating within the high-frequency mmWave ISM band, it encompasses a diverse range of license-free mmWave applications. The designed DMA achieves key performance metrics, boasting a bandwidth exceeding 2.16 GHz around 60 GHz, a high gain of above 9 dBi for most beamforming codes, and a radiation efficiency surpassing 60%. Additionally, it offers a versatile beam synthesis capability, enabling the generation of narrow pencil beams, wide beams, and multiple beams from a single DMA aperture. The proposed antenna solutions were fabricated, and tested through an in-house designed measurement setup which is elucidated in this thesis. Eventually, the striking futuristic applications of mmWave antennas, and their associated open research challenges are highlighted
    corecore