16,232 research outputs found

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    Total Domination, Separated Clusters, CD-Coloring: Algorithms and Hardness

    Full text link
    Domination and coloring are two classic problems in graph theory. The major focus of this paper is the CD-COLORING problem which combines the flavours of domination and colouring. Let GG be an undirected graph. A proper vertex coloring of GG is a cdcoloringcd-coloring if each color class has a dominating vertex in GG. The minimum integer kk for which there exists a cdcoloringcd-coloring of GG using kk colors is called the cd-chromatic number, χcd(G)\chi_{cd}(G). A set SV(G)S\subseteq V(G) is a total dominating set if any vertex in GG has a neighbor in SS. The total domination number, γt(G)\gamma_t(G) of GG is the minimum integer kk such that GG has a total dominating set of size kk. A set SV(G)S\subseteq V(G) is a separatedclusterseparated-cluster if no two vertices in SS lie at a distance 2 in GG. The separated-cluster number, ωs(G)\omega_s(G), of GG is the maximum integer kk such that GG has a separated-cluster of size kk. In this paper, first we explore the connection between CD-COLORING and TOTAL DOMINATION. We prove that CD-COLORING and TOTAL DOMINATION are NP-Complete on triangle-free dd-regular graphs for each fixed integer d3d\geq 3. We also study the relationship between the parameters χcd(G)\chi_{cd}(G) and ωs(G)\omega_s(G). Analogous to the well-known notion of `perfectness', here we introduce the notion of `cd-perfectness'. We prove a sufficient condition for a graph GG to be cd-perfect (i.e. χcd(H)=ωs(H)\chi_{cd}(H)= \omega_s(H), for any induced subgraph HH of GG) which is also necessary for certain graph classes (like triangle-free graphs). Here, we propose a generalized framework via which we obtain several exciting consequences in the algorithmic complexities of special graph classes. In addition, we settle an open problem by showing that the SEPARATED-CLUSTER is polynomially solvable for interval graphs

    Degree-constrained edge partitioning in graphs arising from discrete tomography

    Get PDF
    Starting from the basic problem of reconstructing a 2-dimensional im- age given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k = 3 colors is open. Variations and special cases are considered for the case k = 3 colors where the graph corresponding to the union of some color classes (for instance colors 1 and 2) has a given structure (tree, vertex- disjoint chains, 2-factor, etc.). We also study special cases corresponding to the search of 2 edge-disjoint chains or cycles going through speci ed vertices. A variation where the graph is oriented is also presented. In addition we explore similar problems for the case where the under- lying graph is a complete graph (instead of a complete bipartite graph)

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement

    Coloring hypergraphs with excluded minors

    Full text link
    Hadwiger's conjecture, among the most famous open problems in graph theory, states that every graph that does not contain KtK_t as a minor is properly (t1)(t-1)-colorable. The purpose of this work is to demonstrate that a natural extension of Hadwiger's problem to hypergraph coloring exists, and to derive some first partial results and applications. Generalizing ordinary graph minors to hypergraphs, we say that a hypergraph H1H_1 is a minor of a hypergraph H2H_2, if a hypergraph isomorphic to H1H_1 can be obtained from H2H_2 via a finite sequence of vertex- and hyperedge-deletions, and hyperedge contractions. We first show that a weak extension of Hadwiger's conjecture to hypergraphs holds true: For every t1t \ge 1, there exists a finite (smallest) integer h(t)h(t) such that every hypergraph with no KtK_t-minor is h(t)h(t)-colorable, and we prove 32(t1)h(t)2g(t)\left\lceil\frac{3}{2}(t-1)\right\rceil \le h(t) \le 2g(t) where g(t)g(t) denotes the maximum chromatic number of graphs with no KtK_t-minor. Using the recent result by Delcourt and Postle that g(t)=O(tloglogt)g(t)=O(t \log \log t), this yields h(t)=O(tloglogt)h(t)=O(t \log \log t). We further conjecture that h(t)=32(t1)h(t)=\left\lceil\frac{3}{2}(t-1)\right\rceil, i.e., that every hypergraph with no KtK_t-minor is 32(t1)\left\lceil\frac{3}{2}(t-1)\right\rceil-colorable for all t1t \ge 1, and prove this conjecture for all hypergraphs with independence number at most 22. By considering special classes of hypergraphs, the above additionally has some interesting applications for ordinary graph coloring, such as: -graphs of chromatic number CktloglogtC k t \log \log t contain KtK_t-minors with kk-edge-connected branch-sets, -graphs of chromatic number CqtloglogtC q t \log \log t contain KtK_t-minors with modulo-qq-connected branch sets, -by considering cycle hypergraphs of digraphs we recover known results on strong minors in digraphs of large dichromatic number as special cases.Comment: 15 pages, corrected proof of Proposition

    A general framework for coloring problems: old results, new results, and open problems

    Get PDF
    In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page
    corecore