8 research outputs found

    Open Loop Execution of Tree-Search Algorithms

    Get PDF
    In the context of tree-search stochastic planning algorithms where a generative model is available, we consider on-line planning algorithms building trees in order to recommend an action. We investigate the question of avoiding re-planning in subsequent decision steps by directly using sub-trees as action recommender. Firstly, we propose a method for open loop control via a new algorithm taking the decision of re-planning or not at each time step based on an analysis of the statistics of the sub-tree. Secondly, we show that the probability of selecting a suboptimal action at any depth of the tree can be upper bounded and converges towards zero. Moreover, this upper bound decays in a logarithmic way between subsequent depths. This leads to a distinction between node-wise optimality and state-wise optimality. Finally, we empirically demonstrate that our method achieves a compromise between loss of performance and computational gain

    Memory Bounded Open-Loop Planning in Large POMDPs using Thompson Sampling

    Full text link
    State-of-the-art approaches to partially observable planning like POMCP are based on stochastic tree search. While these approaches are computationally efficient, they may still construct search trees of considerable size, which could limit the performance due to restricted memory resources. In this paper, we propose Partially Observable Stacked Thompson Sampling (POSTS), a memory bounded approach to open-loop planning in large POMDPs, which optimizes a fixed size stack of Thompson Sampling bandits. We empirically evaluate POSTS in four large benchmark problems and compare its performance with different tree-based approaches. We show that POSTS achieves competitive performance compared to tree-based open-loop planning and offers a performance-memory tradeoff, making it suitable for partially observable planning with highly restricted computational and memory resources.Comment: Presented at AAAI 201

    Adaptive Thompson Sampling Stacks for Memory Bounded Open-Loop Planning

    Full text link
    We propose Stable Yet Memory Bounded Open-Loop (SYMBOL) planning, a general memory bounded approach to partially observable open-loop planning. SYMBOL maintains an adaptive stack of Thompson Sampling bandits, whose size is bounded by the planning horizon and can be automatically adapted according to the underlying domain without any prior domain knowledge beyond a generative model. We empirically test SYMBOL in four large POMDP benchmark problems to demonstrate its effectiveness and robustness w.r.t. the choice of hyperparameters and evaluate its adaptive memory consumption. We also compare its performance with other open-loop planning algorithms and POMCP.Comment: Accepted at IJCAI 2019. arXiv admin note: substantial text overlap with arXiv:1905.0402

    Emergence and resilience in multi-agent reinforcement learning

    Get PDF
    Our world represents an enormous multi-agent system (MAS), consisting of a plethora of agents that make decisions under uncertainty to achieve certain goals. The interaction of agents constantly affects our world in various ways, leading to the emergence of interesting phenomena like life forms and civilizations that can last for many years while withstanding various kinds of disturbances. Building artificial MAS that are able to adapt and survive similarly to natural MAS is a major goal in artificial intelligence as a wide range of potential real-world applications like autonomous driving, multi-robot warehouses, and cyber-physical production systems can be straightforwardly modeled as MAS. Multi-agent reinforcement learning (MARL) is a promising approach to build such systems which has achieved remarkable progress in recent years. However, state-of-the-art MARL commonly assumes very idealized conditions to optimize performance in best-case scenarios while neglecting further aspects that are relevant to the real world. In this thesis, we address emergence and resilience in MARL which are important aspects to build artificial MAS that adapt and survive as effectively as natural MAS do. We first focus on emergent cooperation from local interaction of self-interested agents and introduce a peer incentivization approach based on mutual acknowledgments. We then propose to exploit emergent phenomena to further improve coordination in large cooperative MAS via decentralized planning or hierarchical value function factorization. To maintain multi-agent coordination in the presence of partial changes similar to classic distributed systems, we present adversarial methods to improve and evaluate resilience in MARL. Finally, we briefly cover a selection of further topics that are relevant to advance MARL towards real-world applicability.Unsere Welt stellt ein riesiges Multiagentensystem (MAS) dar, welches aus einer Vielzahl von Agenten besteht, die unter Unsicherheit Entscheidungen treffen müssen, um bestimmte Ziele zu erreichen. Die Interaktion der Agenten beeinflusst unsere Welt stets auf unterschiedliche Art und Weise, wodurch interessante emergente Phänomene wie beispielsweise Lebensformen und Zivilisationen entstehen, die über viele Jahre Bestand haben und dabei unterschiedliche Arten von Störungen überwinden können. Die Entwicklung von künstlichen MAS, die ähnlich anpassungs- und überlebensfähig wie natürliche MAS sind, ist eines der Hauptziele in der künstlichen Intelligenz, da viele potentielle Anwendungen wie zum Beispiel das autonome Fahren, die multi-robotergesteuerte Verwaltung von Lagerhallen oder der Betrieb von cyber-phyischen Produktionssystemen, direkt als MAS formuliert werden können. Multi-Agent Reinforcement Learning (MARL) ist ein vielversprechender Ansatz, mit dem in den letzten Jahren bemerkenswerte Fortschritte erzielt wurden, um solche Systeme zu entwickeln. Allerdings geht der Stand der Forschung aktuell von sehr idealisierten Annahmen aus, um die Effektivität ausschließlich für Szenarien im besten Fall zu optimieren. Dabei werden weiterführende Aspekte, die für die echte Welt relevant sind, größtenteils außer Acht gelassen. In dieser Arbeit werden die Aspekte Emergenz und Resilienz in MARL betrachtet, welche wichtig für die Entwicklung von anpassungs- und überlebensfähigen künstlichen MAS sind. Es wird zunächst die Entstehung von emergenter Kooperation durch lokale Interaktion von selbstinteressierten Agenten untersucht. Dazu wird ein Ansatz zur Peer-Incentivierung vorgestellt, welcher auf gegenseitiger Anerkennung basiert. Anschließend werden Ansätze zur Nutzung emergenter Phänomene für die Koordinationsverbesserung in großen kooperativen MAS präsentiert, die dezentrale Planungsverfahren oder hierarchische Faktorisierung von Evaluationsfunktionen nutzen. Zur Aufrechterhaltung der Multiagentenkoordination bei partiellen Veränderungen, ähnlich wie in klassischen verteilten Systemen, werden Methoden des Adversarial Learning vorgestellt, um die Resilienz in MARL zu verbessern und zu evaluieren. Abschließend wird kurz eine Auswahl von weiteren Themen behandelt, die für die Einsatzfähigkeit von MARL in der echten Welt relevant sind

    Open Loop Execution of Tree-Search Algorithms

    No full text
    National audienceIn the context of tree-search stochastic planning algorithms where a generative model is available, we consider on-line planning algorithms building trees in order to recommend an action. We investigate the question of avoiding re-planning in subsequent decision steps by directly using the sub-tree as an action recommender. Firstly, we propose a method for open loop control via a new algorithm taking the decision of re-planning or not at each time step based on an analysis of the statistics of the sub-tree. Secondly , we show that the probability of selecting a subopti-mal action at any depth of the tree can be upper bounded and converges towards zero. Moreover, this upper bound decays in a logarithmic way between subsequent depths. This leads to a distinction between node-wise optimality and state-wise optimality. Finally, we empirically demonstrate that our method achieves a compromise between loss of performance and computational gain
    corecore