278,321 research outputs found

    State Regulation of Open-Access, Common-Pool Resources.

    Get PDF
    Open-access, common-pool resources, such as many fisheries, aquifers, oil pools, and the atmosphere, often require some type of regulation of private access and use to avoid wasteful exploitation. This paper summarizes the arguments and literature associated with this problem. The historical and contemporary record of open-access resources is not a happy one, and many of the problems persist, despite large aggregate gains from resolving them. The discussion here suggests why that is the case. The paper focuses on government responses to the common pool, the private and political negotiations underlying them, and the information and transaction costs that influence the design of property rights and regulatory policies. Understanding the type of institution that emerges and its effects on the commons depends upon identifying the key parties involved, their objectives, and their political influence. Further, it requires detailed analysis of the bargaining that occurs within and across groups. The paper summarizes the open-access problem and provides case analyses of regulation of common-pool fisheries, oil reservoirs, and the atmosphere. The final section summarizes the general themes and the advantages of the New Institutional Economics (NIE) approach to analyzing the common pool.

    CHARACTERIZATION OF VERNAL POOLS ACROSS NATIONAL PARKS IN THE GREAT LAKES REGION

    Get PDF
    Vernal pools are small, ephemeral wetlands that become inundated each spring and provide many ecosystem services to the surrounding upland forests. They also provide critical habitat for amphibians and invertebrates, as their temporary nature keeps them free of fish and reduces predator populations. As part of a mapping project, we collected baseline field data on vernal pool characteristics throughout five Great Lakes National Parks: Pictured Rocks National Lakeshore, Sleeping Bear Dunes National Lakeshore, Apostle Islands National Lakeshore, Isle Royale National Park, and Voyagers National Parks. Our goals were to characterize and assess how vernal pools vary within and across the five national parks, and determine which characteristics are most correlated with the presence of vernal pool indicator species. We sampled 139 pools during spring of 2021 and 2022 where we collected data on pool characteristics related to hydrology, soils, vegetation, geomorphology, and indicator species. This baseline data shows that vernal pool characteristics do vary between the different parks. Many vernal pool qualities are driven by the type of substrate they occur on and overstory canopy species and amount of cover. The vegetation and canopy species present reflect the dominant vegetation of each park. We also created a classification system that describes which characteristics were most highly correlated to indicator species presence, resulting in a three-class system based on overstory species composition: Deciduous (\u3e50% deciduous canopy), Coniferous (\u3c50% deciduous canopy), and Open (\u3c30% canopy cover). Indicator species were more likely to occur in pools with either a deciduous or open canopy than pools with a coniferous canopy. This information can be used to inform land managers within the Great Lakes of vernal pool characteristics they can expect, and which pools are hotspots for indicator species

    Open Access in Law Teaching: A New Approach to Legal Education

    Get PDF
    The open access movement seeks to change our approach to the distribution of scholarship in the fields of science, medicine, the social sciences, and law. This Essay argues for the application of these principles to legal education itself. Open access would mean greater flexibility, interaction, and innovation in the creation of course materials. It would lead to new teaching methods and new forms of feedback between student and professor. Open access centers on particular legal subject areas could facilitate national and international collaboration. Ultimately, the open access law school would ameliorate the growing standardization and commodification of legal education by drawing on global pools of information while at the same time providing more localized feedback to individual students

    Variability of Water Storage and Instream Temperature in Beaded Arctic Streams

    Get PDF
    The purpose of this study is to investigate variation in water export and instream temperatures throughout the open water season in a beaded Arctic stream, consisting of small pools connected by shallow chutes. The goals are to better understand heat and mass movement through these systems, how this may impact chemical and biological processes, and the resulting shifts with changes in climate. This is accomplished by first examining the extent and variability of water storage and export through qualitative analysis of observational data. Further, heat fate and transport is examined through development of an instream temperature model. The model formulation, a simple approach to model calibration and validation, and information regarding residence and characteristic times of different pool layers are presented. Using temperatures measured at high spatial resolution within the pools and surrounding bed sediments as well as other supporting data (e.g., instream flow, specific conductivity, weather data, and bathymetry), various types of storage within the pools, banks, and marshy areas within the riparian zone, including subsurface flow paths that connect the pools, were found. Additionally, data illustrated that some pools will stay stratified during higher flow periods under certain weather conditions. Through modeling efforts, the dominant heat sources were found to vary between stratified layers. It was also found that potential increases in thaw depths surrounding these pools can shift stratification and mixing patterns. These shifts can further influence mass export dynamics and instream water quality. Given the amount and different types of storage within these systems and the influence of stratification patterns on the residence times in the pools, Imnavait Basin and similar beaded Arctic watersheds will likely experience delayed export of nutrients that are limiting in most Arctic systems

    Be Selfish and Avoid Dilemmas: Fork After Withholding (FAW) Attacks on Bitcoin

    Full text link
    In the Bitcoin system, participants are rewarded for solving cryptographic puzzles. In order to receive more consistent rewards over time, some participants organize mining pools and split the rewards from the pool in proportion to each participant's contribution. However, several attacks threaten the ability to participate in pools. The block withholding (BWH) attack makes the pool reward system unfair by letting malicious participants receive unearned wages while only pretending to contribute work. When two pools launch BWH attacks against each other, they encounter the miner's dilemma: in a Nash equilibrium, the revenue of both pools is diminished. In another attack called selfish mining, an attacker can unfairly earn extra rewards by deliberately generating forks. In this paper, we propose a novel attack called a fork after withholding (FAW) attack. FAW is not just another attack. The reward for an FAW attacker is always equal to or greater than that for a BWH attacker, and it is usable up to four times more often per pool than in BWH attack. When considering multiple pools - the current state of the Bitcoin network - the extra reward for an FAW attack is about 56% more than that for a BWH attack. Furthermore, when two pools execute FAW attacks on each other, the miner's dilemma may not hold: under certain circumstances, the larger pool can consistently win. More importantly, an FAW attack, while using intentional forks, does not suffer from practicality issues, unlike selfish mining. We also discuss partial countermeasures against the FAW attack, but finding a cheap and efficient countermeasure remains an open problem. As a result, we expect to see FAW attacks among mining pools.Comment: This paper is an extended version of a paper accepted to ACM CCS 201

    Portsmouth Vernal Pool Inventory

    Get PDF
    West Environmental, Inc. (WEI) conducted a city-wide Vernal Pool Inventory to locate, document and map vernal pools in Portsmouth. This effort was coordinated with the Portsmouth Planning Department and Conservation Commission to help the City of Portsmouth in vernal pool identification and mapping. The goal of this project was to locate isolated wetlands that provide vernal pool habitat. Currently the City of Portsmouth’s wetland regulations exempt wetlands less than 5,000 square feet from the local 100’ buffer zone. This study identified smaller wetlands which have the potential to provide vernal pool habitat that may deserve the 100 foot buffer protection. It should be noted that vernal pool habitat can exist in a variety of freshwater wetlands including larger red maple swamps. These areas were also mapped when encountered. A field workshop was held for the Conservation Commission members to give them hands-on training in vernal pool ecology. The results of this Vernal Pool Inventory were presented to the Portsmouth Conservation Commission in July of 2008. Based on the results of this study and the recent revisions to the NHDES Wetlands Bureau regulations which added rules for vernal pool protection, the Portsmouth Conservation Commission has recommended a change to the Article 8 - Environmental Protection Standards of the City of Portsmouth to include vernal pool identification and protection with a 100’ buffer

    Pickering Brook Salt Marsh Restoration - Phase II

    Get PDF
    In the early 1900’s, the majority of coastal salt marshes in New England were ditched as part of an aggressive mosquito control program. In an attempt to eradicate mosquito-breeding habitat, open water areas were drained by a series of ditches excavated in the thick peat soils. Elimination of open water and the unnatural drainage patterns led to degradation of healthy, functional saltmarsh systems and the disappearance of critical habitat for American black ducks, wading birds, shorebirds, shellfish, and fish species, including those that eat mosquito larvae. The practice of mosquito ditching has since been found to have unintended consequences in salt marshes. The artificial ditch systems were found to hold shallow water just long enough for mosquitoes to successfully breed, while prohibiting access to predatory fish species that eat the larvae. Mosquito populations thrived. Ditching also lowered the water table and reduced soil salinities, thus increasing the potential for the invasion of non-native species, such as Phragmites australis (Daiber 1986). Overall, ditching decreased habitat for native species, disrupted the normal hydrologic functions of the salt marsh ecosystem and likely increased mosquito populations. The 23-acre salt marsh addressed in Phase II of this project is part of the larger 42-acre Pickering Brook salt marsh restoration project area (Phase I: 19 acres, Phase II: 23 acres). The Phase II salt marsh is located on the north side of Pierce Point, along Pickering Brook, adjacent to Great Bay in Greenland, Rockingham County, New Hampshire. It is located within the Great Bay Estuary and is identified as a high priority habitat in the Habitat Protection Plan of the Great Bay Resource Protection Partnership. The goal of the Pickering Brook Salt Marsh Restoration Project Phase I and Phase II was to restore a more natural hydrologic regime and provide permanent open water areas on the marsh surface. Restoration activities included the creation and enhancement of surface pools and reclamation of the man-made ditches, while imposing the least impact to the marsh surface. The restoration will also manage mosquito populations, expand recreational opportunities and improve water quality on the marsh Phase II construction occurred under permit number 2002-02056 as amended. Ducks Unlimited contracted with SWAMP, Inc. to complete restoration activities with specialized low ground pressure equipment. Using a specialized wetland excavator, 13 man-made ditches were filled using marsh soils excavated during the enhancement of four permanent pools. To restore the marsh platform of the 23-acre Phase II salt marsh, approximately 470 CY of material was excavated for pool enhancement and then returned to the marsh through the filling or partial filling of existing ditches. Phase II earthmoving activities were completed by April 30, 2004. A monitoring plan was established for Pickering Brook based on a combination of the GPAC and U.S. Fish and Wildlife Service, Coastal Program protocols. Monitoring will provide data necessary to evaluate both restoration approaches and their rate of success at accomplishing goals for this site through the sampling of chosen parameters or indicators. Data analysis and conclusions are beyond the scope of this restoration project and will be conducted under a separate contract. Data was collected with the help of local landowners and volunteers from the Portsmouth Country Club, the Great Bay National Estuarine Research Reserve, and Ducks Unlimited, Inc. Parameters used to assess the success of this restoration include fish use, bird use, mosquito larvae abundance, water levels and salinity, and native vegetation growth. In the ever-evolving world of salt marsh restoration, it is important to incorporate an adaptive management plan into project design. For larger areas, a phased approach may also provide flexibility and benefit restoration efforts at a specific site under specific conditions. The completion of Phase I of the Pickering Brook restoration provided important information and feedback that were used to modify the Pickering Phase II restoration design. The two approaches used to reclaim man-made ditches at Pickering Brook were meant to address the goals and objectives of the restoration plan. Monitoring data collected in subsequent years will be analyzed to comparatively evaluate marsh recovery. Using these two techniques side by side creates an opportunity for study and will provide researchers and land managers with great insight into the response of this salt marsh community to these practices
    • …
    corecore