
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2011 

Variability of Water Storage and Instream Temperature in Beaded Variability of Water Storage and Instream Temperature in Beaded 

Arctic Streams Arctic Streams 

Madeline F. Merck 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Merck, Madeline F., "Variability of Water Storage and Instream Temperature in Beaded Arctic Streams" 
(2011). All Graduate Theses and Dissertations. 912. 
https://digitalcommons.usu.edu/etd/912 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.usu.edu%2Fetd%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/912?utm_source=digitalcommons.usu.edu%2Fetd%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 

VARIABILITY OF WATER STORAGE 

AND INSTREAM TEMPERATURE 

IN BEADED ARCTIC STREAMS 

by 

Madeline F. Merck 

A thesis submitted in partial fulfillment 

of the requirements for the degree 

of 

MASTER OF SCIENCE 

in 

Civil and Environmental Engineering 

 

Approved: 

 

 

Bethany T. Neilson     Mac McKee 

Major Professor     Committee Member 

 

 

 

Thomas B. Hardy     Byron R. Burnham 

Committee Member     Dean of Graduate Studies 

 

 

UTAH STATE UNIVERSITY 

Logan, Utah 

2011 



 

ii 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Madeline F. Merck 2011 

All Rights Reserved 

  



 

iii 

  

 

ABSTRACT 

Variability of Water Storage and Instream Temperature 

in Beaded Arctic Streams 

by 

Madeline F. Merck, Master of Science 

Utah State University, 2011 

Major Professor: Bethany T. Neilson 

Department: Civil and Environmental Engineering 

The purpose of this study is to investigate variation in water export and instream 

temperatures throughout the open water season in a beaded Arctic stream, consisting of 

small pools connected by shallow chutes. The goals are to better understand heat and 

mass movement through these systems, how this may impact chemical and biological 

processes, and the resulting shifts with changes in climate. This is accomplished by first 

examining the extent and variability of water storage and export through qualitative 

analysis of observational data. Further, heat fate and transport is examined through 

development of an instream temperature model. The model formulation, a simple 

approach to model calibration and validation, and information regarding residence and 

characteristic times of different pool layers are presented. Using temperatures measured 

at high spatial resolution within the pools and surrounding bed sediments as well as other 

supporting data (e.g., instream flow, specific conductivity, weather data, and 

bathymetry), various types of storage within the pools, banks, and marshy areas within 



 

iv 

  

 

the riparian zone, including subsurface flow paths that connect the pools, were found. 

Additionally, data illustrated that some pools will stay stratified during higher flow 

periods under certain weather conditions. Through modeling efforts, the dominant heat 

sources were found to vary between stratified layers. It was also found that potential 

increases in thaw depths surrounding these pools can shift stratification and mixing 

patterns. These shifts can further influence mass export dynamics and instream water 

quality. Given the amount and different types of storage within these systems and the 

influence of stratification patterns on the residence times in the pools, Imnavait Basin and 

similar beaded Arctic watersheds will likely experience delayed export of nutrients that 

are limiting in most Arctic systems. 

(96 pages) 
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CHAPTER 1 

INTRODUCTION 

Although mitigation of anthropogenic influences has been the historical 

motivation for studying instream temperatures, climate change, particularly in Arctic 

systems, has become the recent impetus [Webb et al., 2008]. Climate change in the Arctic 

has resulted in seasonal increases in air temperature [Chapman and Walsh, 1993; Serreze 

et al., 2000; Wang and Key, 2003] and changes in precipitation and wind patterns 

[Hinzman and Kane, 1992]. These changes have the potential to impact the land surface 

energy balance through shifts in vegetation and snowmelt patterns [Sturm et al., 2005], 

changes in albedo and depth of thaw in soils [Hinzman et al., 1991], and later freeze and 

earlier thaw of rivers and lakes [Mangnuson et al., 2000]. All of these and other potential 

changes impact the hydrologic system and can therefore influence surface water 

temperatures.  

Investigating storage and export dynamics within watersheds is important in 

understanding the fate and transport of heat and other constituents of interest (e.g., 

nutrients). Movement of heat and mass through watersheds is highly affected by storage 

[Mc�amara et al., 1998] via three distinct areas including hillslope, riparian, and 

transient storage (lumped in-channel and hyporheic storage). Nutrient fate and transport 

are of particular interest in Arctic watersheds where transport is limited [Brooks and 

Williams, 1999; Chapin et al., 1980; Dowding et al., 1981; Kling, 1995; Mc�amara et 

al., 2008; Satoru et al., 2006], yet our current understanding of the physical processes 

that dictate movement within and from these storage areas is incomplete. 
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Hillslope storage has been thoroughly studied in the Arctic systems and is 

relatively well understood [Stieglitz et al., 2003].  Mc�amara et al. [1997] stated that 

water storage is severely inhibited by permafrost, particularly in early spring when the 

active layer, the upper portion of the ground that experiences the freeze-thaw cycle, is at 

or near zero depth. They found that during snowmelt, stream flow in the Arctic is almost 

entirely composed of new meltwater due to the lack of hillslope storage and that pre-

event water contributions to streamflow increase through the summer as thaw depths 

increase. Edwardson et al. [2003] further highlighted the importance of the active layer 

storage relative to increases in depth of thaw and subsequent impacts on nutrient export.  

As the hillslope active layer depths increase, the depths of thaw in riparian areas will also 

increase and create additional storage locations.  

The influence of riparian areas on water and nutrient movement has been found to 

be important in temperate climates, especially due to flushing by rising groundwater 

levels [Inamdar et al., 2009]. In their review focusing on the hydrologic controls of 

nitrogen transport in near-stream zones, Cirmo and McDonnell [1997] highlights the 

importance of these environments both biogeochemically and hydrologically in temperate 

climates. Haggerty et al. [2002] further found that long residence times due to large 

riparian and hyporheic storage impact the export of nutrients. Similarly, Edwardson et al. 

[2003] found that near-stream and transient storage areas within Arctic streams are 

biogeochemically significant. However, the hydrologic connectivity within riparian 

zones, between hillslope and riparian zones, and between the riparian zone and the stream 

are not clear. Further, the implications on storage and export of water and key materials 

in Arctic watersheds requires further investigation.  
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The influences of transient storage processes have also been investigated in the 

Arctic. Zarnetske et al. [2007] found that the greatest mean storage residence time, the 

average time interval that a water particle spends within a storage zone, occurred at low 

flow conditions and exponentially decayed with increasing discharge in alluvial and peat 

streams. Throughout their low flow simulations, both discharge and thaw depth 

correlated with transient storage, however discharge dominated storage zone conditions. 

More specifically, Edwardson et al. [2003] found the ratio of total transient storage area 

to channel area to be high in peat-bed beaded Arctic streams consisting of small pools 

connected by shallow chutes. This stream type has been known to have insignificant 

hyporheic exchange, but large in-pool storage due to bead volume, low discharge, and 

thermal stratification [Edwardson, 2003; Irons and Oswood, 1992]. While the majority of 

existing research on transient storage has been performed in temperate alluvial streams 

[Zarnetske et al., 2007], water storage and export within beaded Arctic streams, where 

stratification commonly occurs, is currently not well understood. Since headwater beaded 

Arctic streams are among the least studied [Oswood et al., 1989] and there is only a loose 

understanding of the physical processes affecting both storage and instream temperature 

regimes, our current understanding and abilities to predict the influences of climate 

change in these systems are limited at best. 

An improved understanding of these systems necessitates qualification of water 

storage and export and quantification of the heat fluxes driving stratification and in pool 

storage. To help achieve this, the following research objectives were developed: 

Objective 1: Collect and analyze high spatial resolution data to identify the 

physical processes dominating or influencing beaded Arctic streams. From this 
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information, the extent and variability of storage and export of water and key 

materials due to stratification and mixing patterns within the pools in the beaded 

stream will be qualified. 

Objective 2: Develop a method of modeling temperature stratification and mixing 

dynamics in individual pools with a beaded Arctic stream. This will result in a 

one-dimensional process based temperature model from which the dominant heat 

sources and sinks will be quantified through in-depth analysis of model output. 

These objectives were accomplished in two separate papers. The first paper, entitled 

“Variability of Instream and Riparian Storage in Beaded Arctic Streams,” accomplishes 

Objective 1 (see Chapter 2); the second paper, entitled “Modeling Instream Temperature 

Variability in Beaded Arctic Streams,” accomplishes Objective 2 (see Chapter 3). 
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CHAPTER 2 

VARIABILITY OF INSTREAM AND 

RIPARIAN STORAGE IN BEADED ARCTIC STREAMS 

Abstract 

The extent and variability of water storage and export throughout the open water 

season in beaded Arctic streams are poorly understood. Various data types were collected 

in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, to 

better understand the effects of in-pool and riparian storage on heat and mass movement 

through these streams. Using temperatures measured at high spatial resolution within the 

pools and surrounding sediments as well as other supporting data (e.g., volumetric 

discharge, specific conductivity, and weather data), we found various types of storage 

within the pools, banks, and other marshy areas within the riparian zone, including 

subsurface flow paths that connect the pools. During low flow periods persistent 

stratification occurred within the pools due to variability in radiation penetration, 

presence of permafrost and low wind stress at the pool surface. Additionally, one shallow 

pool (<0.5m depth) had a tendency to remain stratified during higher flow periods due to 

cold and dense lateral subsurface flows plunging to the bottom of the pools. This 

consistent separation of surface and bottom water masses affected the residence times in 

the pools and, in this and similar Arctic watersheds, could affect the evolution of water 

chemistry and material export. 
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Introduction 

The transport of materials through watersheds is highly influenced by the 

dynamics of water movement and storage.  The rates of transport and the fate of 

dissolved and particulate materials in surface waters is influenced by storage areas on 

hillslopes, in riparian zones, and within transient storage which includes in-channel and 

hyporheic storage [e.g., Mc�amara et al., 1998].  These storage areas may be particularly 

important for terrestrial loss and aquatic export of nutrients in tundra environments [e.g., 

Brooks and Williams, 1999; Mc�amara et al., 2008], in part due to the extreme nutrient 

limitation experienced by both terrestrial and aquatic tundra ecosystems [Chapin et al., 

1980; Dowding et al., 1981; Kling, 1995; Satoru et al., 2006]. 

Hillslope storage has been thoroughly studied in the Arctic systems and is 

relatively well understood [Stieglitz et al., 2003].  Mc�amara et al. [1997] stated that 

water storage is severely inhibited by permafrost, particularly in early spring when the 

active layer, the upper portion of the ground that experiences the freeze-thaw cycle, is at 

or near zero depth. They found that during snowmelt, stream flow in the Arctic is almost 

entirely composed of new meltwater due to the lack of hillslope storage and that pre-

event water contributions to streamflow increase through the summer as thaw depths 

increase. Edwardson et al. [2003] further highlighted the importance of the active layer 

storage relative to increases in depth of thaw and subsequent impacts on nutrient export.  

For both hillslope and riparian storage zones, increases in active layer depth during 

summer will create additional water storage locations. 
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The influence of riparian areas on water and nutrient movement has been found to 

be important in temperate climates, especially due to flushing by rising groundwater 

levels [Inamdar et al., 2009]. In their review focusing on the hydrologic controls of 

nitrogen transport in near-stream zones, Cirmo and McDonnell [1997] highlight the 

importance of these environments both biogeochemically and hydrologically in temperate 

climates. Haggerty et al. [2002] further found that long residence times due to large 

riparian and hyporheic storage impact the export of nutrients. Similarly, Edwardson et al. 

[2003] found that near-stream and transient storage areas within Arctic streams are 

biogeochemically significant. However, the hydrologic connectivity within riparian 

zones, between hillslope and riparian zones, and between the riparian zone and the stream 

are not clear. Further, the implications on storage and export of water and key materials 

in Arctic watersheds requires further investigation. 

The influences of transient storage processes have also been investigated in the 

Arctic. Zarnetske et al. [2007] found that the greatest mean storage residence time, the 

average time interval that a water particle spends within a storage zone, occurred at low 

flow conditions and exponentially decayed with increasing discharge in alluvial and peat 

streams. Throughout their low flow simulations, both discharge and thaw depth 

correlated with transient storage, however discharge dominated storage zone 

characteristics. More specifically, Edwardson et al. [2003] found the ratio of total 

transient storage area to channel area to be high in peat-bed beaded Arctic streams 

consisting of small pools connected by shallow chutes. This stream type typically has 

insignificant hyporheic exchange, but large in-pool storage due to bead volume, low 

discharge, and thermal stratification [Edwardson, 2003; Irons and Oswood, 1992]. While 
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the majority of existing research on transient storage has been performed in temperate 

alluvial streams [Zarnetske et al., 2007], the temporal and spatial extent of water storage 

and export within beaded Arctic streams where stratification commonly occurs is 

unknown. 

To investigate the influences of various storage mechanisms on water movement 

in a peat-bed beaded Arctic watershed, we collected various data types in the riparian 

areas (primarily in-bank or near-stream) and within two small pools. We present these 

data along with other information regarding the hydrologic conditions of our study site. 

We explor the storage and flow patterns in the riparian and in-pool areas under dry, 

transient, and wet conditions.  We also investigated the hydrologic connectivity of the 

hillslope water tracks, riparian areas, and stream, and demonstrate the extent and 

variability of instream storage due to stratification patterns within the pools. 

Site Description 

This study investigates various types of storage in the Imnavait Creek sub-basin, 

located in Imnavait Basin in the Greater Kuparuk Watershed. Imnavait Creek flows north 

into Toolik River, which flows into Kuparuk River and then into the Arctic Ocean. These 

river basins are located north of the Brooks Range on the north slope of Alaska (Figures 

2-1 and 2-2). Imnavait Creek is a beaded stream (Figure 2-3) which form when massive 

ground-ice deposits are exposed due to erosion by the stream [Mc�amara et al., 1998]. 

This part of Alaska is wetland tundra and is completely underlain by several 

hundred meters of permafrost [Osterkamp and Payne, 1981], or permanently frozen 

ground. The top layer of soil, an organic peat layer 10-50 cm thick, overlies glacial till 
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Figure 2-1. Greater Kuparuk Watershed showing the location of Imnavait Creek. 

(Courtesy of Doug Kane) 
 

 

 
Figure 2-2. Aerial view of Imnavait Creek showing water tracks. (Courtesy of Doug 

Kane) 

 

Water Tracks 

Imnavait Creek 
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Figure 2-3. Aerial view of an example of a beaded stream showing pools and connective 

chutes. Also clearly delineated is the low gradient marshy area adjacent to the pools and 

chutes, which we consider to be the riparian area. (Photo by Torre Jorgenson) 

 

[Hinzman et al., 1991]. The active layer, typically reaches depths of approximately 25-40 

cm in this area, though depths of up to 100 cm have been recorded [Hinzman et al., 

1991].  This area is effectively isolated from deep groundwater as the only subsurface 

storage and flow occurs in the shallow active layer [Edlund et al., 1990]. Although 

precipitation events and the associated surface and subsurface runoff do occur during the 

summer season, the local hydrology is dominated by ablation of the snowpack [Kane et 

al., 1989]. Mc�amara et al. [2008] found streamflow during the snowmelt to account for 

an average of 31-39% of the annual water flux whereas the largest summer storm events 

produce 3-19% of the annual water flux. They also found snowmelt streamflow to 

account for the highest nutrient flux though contributions from summer storm events 

increase during the early portion of the season with increasing depth of thaw. Water from 

Water Track 

Pools with 

connective chutes 

Water Track 

Riparian Area 
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precipitation events flows down slope as both overland and subsurface flow through 

water tracks. Once the water reaches the riparian zone, the low gradient marshy area 

adjacent to the pools and chutes, it enters Imnavait Creek as both surface and diffuse 

subsurface flow through the active layer [Kane et al., 2000] (Figures 2-2 and 2-3).  

The portion of Imnavait Creek included in the initial 2009 study is a reach of 

approximately 130 meters (measured along the thalweg) that includes 6 pools and 

accompanying connective chutes, and 5-6 water tracks (Figure 2-4a). The pools range in 

surface area from 17-155 m
2
 and 0.25-2.4 m in depth. The first stage of the data 

collection was a preliminary four day intensive field study, followed by a one month less  

 

 
Figure 2-4. Site schematic of (a) initial study reach from 2009 and (b) smaller reach from 

2010; locations of field temperature measurements are shown. 
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intensive study, performed from mid July to mid August, 2009. These data showed the 

pools were highly stratified and the flow within the system was not simple or 

straightforward. However, the resolution of the data did not provide adequate heat, mass, 

or flow balance information. Therefore, it was determined that a second stage of the study 

would be necessary. 

The second stage was modified based on these results and occurred from early 

July to late August, 2010. Again, a one week intensive study was followed by a one 

month less intensive study. From the first stage, it was determined that higher spatial 

resolution data needed to be collected in order to obtain more detailed information on 

specific processes within the pools and surrounding areas. Therefore, the second stage 

was performed on a subset of pools and chutes from the previous study area (Figure 2-

4b). Pools 4 and 6 were selected as data collection sites for the second stage because they 

are of similar size (with surface areas of 8-11 m
2
 at depths of 0.35-0.5 m) and in close 

proximity to one another, but experience different hydro and thermal dynamics. Pool 4 

appeared to be simple (a control, so to speak) with one inlet and one outlet chute. Pool 6 

had more complexity, including multiple water tracks that directly connect the hillslope 

to the pool and enter at various temperatures along with the inlet and outlet chutes. 

The spring-melt break-up peaked in this area toward the end of May, 2010. By 1 

July, the first day of our 2010 field study, there had been no precipitation in over two 

weeks, but there had been 52.4 mm since the beginning of the year (Figure 2-5a). The air 

temperatures had been, for the most part, above freezing since mid May (Figure 2-5b). 

This weather resulted in dry upland and riparian area conditions and, therefore, very low 

instream flows. However, on 5 July, the rain began and persisted until the end of August.  
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Figure 2-5. Cumulative precipitation (a) and air temperature (b) in leading up to the field 

study. 

 

This nearly continuous precipitation resulted in very little available hillslope storage, 

running water tracks, high instream flows, elevated water surfaces and eventually a 

saturated riparian area. 

Methodology 

Hydrologic Connectivity 

Due to the variation in flow and the constantly changing wetted perimeter of the 

connective chutes throughout the one week intensive study period, three measurement 

types were used to estimate discharge depending on water velocity, volumetric flow, and 

pool levels. The first several days of the study were relatively dry and sunny; stream 

velocities were low and not easily measurable. This low flow situation necessitated flow 

measurements using the bucket method with a 1 liter beaker capturing water flowing over 
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simple weirs that were installed at the inlet and outlet of each pool. When the weather 

turned and stream flow increased substantially, the small weirs became overtopped and 

were rendered useless. These high flows were then measured using the velocity-area 

method with a Marsh McBirney
®

 Flo-Mate
™

 2000 (Frederick, MD) (accuracy = 2% of 

reading) flow meter at locations where the flow merged into a relatively uniform portion 

of the inlet and outlet chutes. Once the high flows had been maintained long enough such 

that the pools were believed to be completely mixed, tracer injection studies were used to 

measure flows in areas where the chute geometry did not allow for measurement using 

the velocity-area method. Salt tracer studies were performed to calculate inlet and outlet 

flows using specific conductivity measurements made with a YSI
®

 Sonde 600 LS or 600 

XLS (Yellow Springs, OH) (accuracy = 0.5% of reading). These measurements were 

translated to chloride mass based on a linear chloride-conductivity relationship 

established for Imnavait Creek in 2009. A stage-discharge relationship was then 

determined using data from the in pool depth measurements and chute flow 

measurements to produce a flow time series. The stage, or pool water surface elevation, 

used for the stage-discharge relationship was measured using an YSI Sonde 600 LS with 

a vented cable in order to correct for changes in atmospheric pressure. With this 

information we were able to compare inlet versus outlet flows in both pools, but still were 

not able to explain all discrepancies due to measurement errors and limitations in 

information used to establish the rating curves. Further confounding our understanding, a 

preferential flow path (or side track) was identified that short-circuits pool 5 (Figure 2-

4b). This flow path included both surface (during wet conditions) and subsurface (during 

both wet and dry conditions) flows depending on water levels in the riparian corridor. 



 

15 

  

 

To further investigate the hydrologic connectivity of this study area, spatially and 

temporally distributed water samples were extracted from the pools and chutes and within 

the surface and subsurface water in the water track and side track. A 20 cm steel needle 

was inserted into either the surface flow stream or 10-20 cm into the soil and 

approximately 40 mL of liquid was extracted. Specific conductivity and temperature were 

then measured using a Consort K912, which has an accuracy of 0.5% full scale of range 

and a resolution of 0.01 µS/cm and 0.1 ̊ C.  

Riparian Storage 

Soil temperature vertical arrays were installed to establish wetting and drying 

patterns in the soils surrounding the pools in the riparian zone (Figure 2-4b). Onset
®

 

HOBO Water Temp Pro V2
™

 (Bourne, MA) (accuracy = 0.2 ºC over 0 to 50 ºC and 

resolution = 0.02 ºC at 25 ºC). temperature sensors were used to record the temperature in 

the sediment every 5 minutes. The installation methods and depths used were similar to 

those described in �eilson et al. [2009]. The sensors for these sediment temperature 

arrays were placed in capped and perforated 1.5” PVC pipe at depths of at 3, 9, and 20 

cm (Figure 2-6). The sensors were isolated vertically from each other so as to measure 

temperature at a specific depth. The intent of this configuration was to allow for lateral 

flow through the pipe but prohibit vertical flow within the pipe. Also, by leaving the 

pipes in place, the sensors could then be re-installed in the same location year after year. 

There were 4 sediment arrays buried around pool 4 (for a total of 12 sensors) and 6 

sediment arrays buried around pool 6 (for a total of 18 sensors) (Figure 2-4b). 
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Figure 2-6. Orientation of temperature sensors in (1) vertical and (2) sediment arrays. 

 

In-Pool Storage 

HOBO Water Temp Pro V2 temperature sensors were placed vertically within 

pools 4 and 6 (Figure 2-4). Temperature in the water column was recorded every 5 

minutes at fixed depths approximately 3 cm a part in order to capture precise timing and 

location of pool stratification (Figure 2-6). The 2010 vertical arrays in pools 4 and 6 

included 19 and 13 sensors, respectively. The sensors were wrapped in aluminum foil to 

avoid heating of the sensor due to radiation penetration within the water [�eilson et al., 

2010b]. Temperature in the water column was also verified several times throughout the 

second stage of the study using a Fluke
®

 5610
™

 thermistor (American Fork, UT) 

(accuracy = 0.01 ºC and resolution = 0.0001 ºC over 0 to 100 ºC) by measuring water 

temperature at 1 cm increments. These measurements were consistent with those 

recorded by the HOBOs verifying that the HOBO sensors were not significantly affected 

by solar radiation. 
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Additional Data Types 

Several meteorological measurements were recorded on an hourly basis from a 

meteorological station on the west-facing ridge of the basin approximately 1 kilometer 

upstream of the study site. Air temperature, relative humidity, and wind speed were 

measured at 1, 3, and 10 meter heights using Campbell Scientific
®

 Model 207 (Logan, 

UT) temperature (accuracy = 0.4 ºC over -36 to 49 ºC)  and humidity (accuracy = 5% 

over 12 to 100%) sensors and Model 014A Met One
®

 wind speed sensor (accuracy = 

0.11 m s
-1

 over 0-45 m s
-1

). Net solar radiation was measured using a Swissteco
®

 Model 

S-1 (Oberriet, Switzerland) Net Radiometer (accuracy = 2.5% over 0.3- 60 M) and 

precipitation was measured at intervals of 0.1 mm using a Texas Electronics tipping 

bucket with an Alter windshield. A site survey was performed using a Trimble
®

 GPS 

(Dayton, OH) system and included bathymetry, thaw depths, and locations of all 

instrumentation. Thaw depths in and around the pools were measured using a graduated 

probe. 

Results 

Hydrologic Connectivity 

We found that instream flow travels from the southern portion of the study area 

through pool 4 and out the well defined chute continuing on to chute 5, pool 5, chute 6, 

and then to pool 6 or out pool 4 at the side track and on to pool 6 (Figure 2-4b). One 

water track flowing into pool 6 and one into pool 5 also exist, none of which were visibly 

running during the initial dry portion of the field study. All water tracks were saturated 

and flowing after several days of rain which started on 5 July. 
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Under dry conditions, all flows were less than 1 L s
-1

 (Figure 2-7a). Inflows to 

pool 4 were consistently greater than outflows suggesting a loss from pool 4 that is likely 

attributable to the side track. Conversely, outflows to pool 6 were greater than inflows, 

which is reasonable given the additional inflow from the side and water tracks. However, 

of particular interest is that outflows of pool 6 were less than inflows of pool 4 except 

under peak flow conditions, which is indicative of losses within the study reach. Once the 

precipitation began, instream flows increased and water levels in the pools rose, which 

resulted in surface flow in the side track (Figure 2-7b). Outflows from pool 6 continued 

to be greater than inflows, but the flow relationship for pool 4 inverted and pool 4 

outflows became greater than pool 4 inflows. 

 

 
 

Figure 2-7. Discharge during low (a) and high (b) flows. Observations are shown as 

symbols and results from the stage-discharge relationship are shown as lines (high flows 

only). 
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Results of the surface water samples and soil water extraction (Table 2-1 and 

Figure 2-8) show that surface waters of the pools experienced measurable warming 

during dry low flow conditions in early July. Deeper water within the pools and 

subsurface flows within the side and water tracks were considerably cooler and specific 

conductivities were much lower. The “dry” conditions data from 2 July shows a gradual 

increase in the surface temperature from chute 4 to chute 6, but then a slight decrease  

 

Table 2-1. Surface Water and Soil Moisture Extraction Grab Samples for Measurement 

of Temperature and Specific Conductivity at Various Locations within the Study Reach
a
 

  DRY WET 

2-Jul 11-Aug 23-Aug 

Location Within Study Site 
Spec Cond Temp Spec Cond Temp Spec Cond Temp 

uS/cm C uS/cm C uS/cm C 

Chute 4 498 18.9 169.1 10.4 287 7 

Pool 4 
Surface 501 19.2 169.5 10.3 285 7.2 

Deep 482 15.2 169.2 10.4 286 7.1 

Chute 5 501 19 168.8 10.4 285 7.1 

Side Track             

(Pool 4 Outlet) 

Surface - - 169.2 10.4 285 7.2 

Subsurface  495 13.8 - - 237 8 

Water Track         

(Pool 5) 

Surface - - - - 25.3 5.1 

Subsurface  - - - - 78.7 5.8 

Pool 5 
Surface - - 168.3 10.3 278 7.2 

Deep - - 168.5 10.2 279 7.1 

Chute 6 463 19.6 168.5 10.3 281 6.9 

Side Track             

(Pool 6 Inlet) 

Surface - - 170 10.2 275 7.5 

Subsurface  422 10.0 - - 240 6.9 

Water Track         

(Pool 6) 

Surface - - 98.4 9.0 76.5 6.5 

Subsurface 178.6 10.6 - - 103.7 7.5 

Pool 6 
Surface 463 19.5 169 10.3 278 7.2 

Deep 439 12.0 169.5 10.2 281 7.1 

Chute 7 450 19.2 165.2 10.7 275 7.6 
a
In general, instream water is diluted and warmed as it flows through the system; more so 

during drier periods. During the dry period, cooler water with lower specific conductivity 

was found deeper in the pools and in the subsurface water. During the wet period, cooler 

water with lower specific conductivity was found only in the water tracks. 
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Figure 2-8. Specific conductivity and temperature of surface and soil water samples 

during low (a) and high (b) flows. The size of the dot is relative within each plot (a) and 

(b). Observations are also shown numerically at each sample location. 

 

from chute 6 to chute 7. The surface water in pool 6 is similar to its inlet water (chute 6), 

however, the deeper water is considerably cooler. The temperature of the deeper water is 

between the pool inlet temperature and the side and water track subsurface water 

temperatures. The temperature of the outlet of pool 6 (chute 7) is between the 

temperatures of the surface and deep water within pool 6. A similar pattern is seen in the 

specific conductivity data for 2 July. During wet high flow conditions (11 and 23 Aug), 

pool temperatures and specific conductivities are much more homogeneous. However, 

note that for both days, the temperatures and specific conductivities of the outlet of pool 6 

(chute 7) are not between the surface and deep water pool temperatures and specific 

conductivities. Also, on 23 August, the temperatures of the subsurface water in the water 

tracks are higher than their surface water temperatures due to very cold air temperatures 

(Figure 2-5b). 
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Riparian Storage 

Plots of each of the 10 sediment arrays are displayed in Figures 2-9 (pool 4) and 

2-10 (pool 6). Arrays #1 and #2 near pool 4 and #5 and #6 near pool 6 were on higher 

ground than the rest of the arrays. The sediments surrounding these arrays were initially 

relatively dry, but became either fully or partially saturated for the latter part of the study. 

Although all the arrays show strong diel temperature fluctuation in the top sensor, arrays 

higher elevation #1, #2, #5, and #6 initially recorded the most active and extreme 

fluctuations. However, notice that array #7, an array that was fully saturated throughout 

the entire study due to its location, started out with what might be considered the most 

sluggish reactions to changes in temperature and ended up with extreme reactions like the 

sensors in higher sediment arrays. It is thought that this top sensor diverged due to 

inappropriate reinstallation on 15 July resulting in temperature measurements of much 

shallower sediments, surface water, or air temperature fluctuations. Interestingly, it 

appears to dominantly mimic air temperature like the other top sensors in dry sediments. 

In all arrays, the middle sensors have some diel fluctuations while the bottom sensor 

recorded very subtle diel fluctuations. As expected, there is also a time lag in the diel 

fluctuations from top to middle to bottom sensors which is due primarily to conduction. 

In the riparian zone, the thaw depths around these pools ranged from 40 to 70 cm 

resulting in observed sediment temperatures that were influenced more by the 

atmospheric conditions rather than the frozen ground below.  All sensors in all arrays 

became tempered once the precipitation began and the riparian area became saturated and 

the influences of both conduction and advection were influencing the temperature 

responses. For example, this occurred around 6, 12, 20, and 29 July and very obviously
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around 7 August. It is important to note that conduction with the dry sediments will differ 

significantly between saturated (k ≈ 1.0 Wm
-1

K
-1

) and unsaturated (k ≈ 0.1 Wm
-1

K
-1

) 

soils [Hinzman et al., 1991]. In array #6, for example, the array furthest from pool 6 both 

laterally and in elevation, data from the top temperature sensor in the sediment are similar 

to the air temperature until precipitation begins on 27 July (Figure 2-11). At that time, the 

sediment temperature mimics the temperature of the top layer of water in pool 6. 

Approximately two days after the precipitation stops, 1 August, the top layer of sediment 

once again responds to the air temperature. This pattern recurs with every precipitation 

event and is evidence of the wetting and drying of the sediments, which can drastically 

influence the storage and flushing of stream water and other solutes. 

 

In-Pool Storage 

At the beginning of the field study, when conditions were dry and flows were low, 

both pools 4 and 6 were strongly stratified throughout the entire water column during the 

day, although the upper portion of each pool would mix daily (Figure 2-12). When 

precipitation occurred, solar radiation levels and air temperature remained low (Figure 2-

13), flows increased, and the pools would mix, sometimes completely. However, on 9 

July, two days after the precipitation stopped, only pool 6 completely restratified (Figure 

2-14). Throughout the study period, pool 6 consistently cycled between mixing and 

restratifying while pool 4 remained primarily mixed during high flow conditions. It is 

hypothesized that pool 6 restratifies more strongly due to the addition and plunging of 

colder water from the side and water tracks. Pool 4 does not have these additional inlet  
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flows and, once mixed, remains mixed with the exception of minor diurnal stratification 

of the bottom few centimeters on 9-12 July when the flows were slightly decreased and 

solar radiation and air temperatures were elevated (Figure 2-13). 

 

Discussion 

At the start of the field study, the basin had been dry for several weeks (Figure 2-

5). The water levels in the pools were very low, there was minimal flow within the chutes 

between the pools, and there was no surface flow within the water tracks (Figure 2-7a). In 

addition, some of the sediments surrounding the pools were dry, which is evident by 

comparing temperatures on 4-6 July (Figure 2-10) from sediment array #6 that was 

initially placed in dry sediments and sediment array #8 which was saturated throughout 

the study due to exit flow from the side track. At this point in time, the available hillslope 

and riparian storage was at its greatest. The only potential for movement of water and 

export of solutes laterally into the stream was due to minimal subsurface flow from 

melting ice lenses or permafrost thaw resulting in the small instream flows. 

During this initial dry period, water exiting pool 4 at the side track was mostly 

surface water from the pool evidenced by specific conductivities and temperatures in the 

side track similar to those from the top layer of pool 4 (Table 2-1, Figures 2-8a, 2-9 and 

2-12). A significant portion of the water flowing out of pool 4 would infiltrate the side 

track, becoming subsurface lateral flow on its path from pool 4 to 6. This loss of flow, as 

seen from the large disparities in inlet and outlet flows for both pools 4 and 6 during this 

time (Figure 2-7a), is attributable to the seemingly increasing amount of water being 
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stored in the side track due to its slow subsurface flow to pool 6. During its traverse from 

pool 4 to 6, the temperature of this subsurface lateral flow was influenced by the 

underlying permafrost. Once this flow reached the end of the side track it entered pool 6. 

Upon entering, the significantly colder water plunged, adding volume to the already cool 

bottom layer of pool 6 and therefore assisted in keeping the pool stratified. We anticipate 

that subsurface flow, and at times cold surface flow, from water tracks would have a 

similar effect on stratification during a variety of flow conditions.  

In looking at the synoptic sampling during the dry period (2 July, Table 2-1 and 

Figure 2-8a), note that the water track, experiencing only subsurface flow at this point, 

had a relatively low specific conductivity (178.6 µS/cm). Water in the side track near 

pool 4 had a specific conductivity of 495 µS/cm; however, the concentration was diluted 

to 422 µS/cm near pool 6.  This is indicative of the addition of lower specific 

conductivity water likely due to hillslope contributions or the residence times in the side 

track being long enough that the water near pool 6 was older (i.e., from a previous event). 

Storage within the pools during low flow conditions was similar in nature to that 

of the side track riparian storage in that there was little or slowed movement of water into 

and out of the lower layers of these pools when stratified (Figure 2-12). Because the 

warmer inlet flows entered the pools within the surface layers and there was minimal 

advective mixing between the warm surface and cold lower layers during low flows, the 

inlet flows consistently skimmed the pool surface during the day (Table 2-1 and Figures 

2-8a and 2-12). At night, lower air temperatures and minimal solar radiation resulted in 

lower temperatures of the pool’s surface layer creating a diurnal mixing pattern within 

the upper layers.  Therefore, we anticipate that the depth over which the inlet flows 
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mixed became deeper at night. Small amounts of exchange with the bottom layers were 

likely occurring due to minimal advective mixing and diffusive exchange with the water 

in the upper layers. Since there had been no rain in the multiple weeks prior to this data 

being collected, the water and accompanying solutes in the bottom layer of the pools 

were likely from several weeks earlier. In fact, it is highly possible that a fraction of the 

water in deeper pools may have been from the spring melt. 

Once precipitation began on 5 July, the large amounts of available hillslope and 

riparian storage within the active layer started to fill. It took approximately two days 

before the water tracks consistently produced surface flow and instream flows started to 

significantly change. During this transition between dry and wet conditions, the arrays 

that initially had been installed in dry sediments would become completely saturated with 

stores of water from the rising levels of the adjacent pools, cold infiltrated rain, and 

lateral hillslope water (e.g., arrays #1-6 and #9 in Figures 2-9 and 2-10) [Bense and Kooi, 

2004]. The rain, cold air temperatures, and minimal radiation (Figure 2-13) also resulted 

in significant cooling of the upper layers of the pools and surrounding sediments. At this 

time, temperatures of the pools and surrounding sediments quickly plunged and became 

uniform as the upper layers cooled to that of the lower layers. 

On 6 July, after the rain event, the flows in pool 4 switched from inlet flows 

greater than outlet flows to outlet greater that inlet. The top layer of adjacent sediment 

became saturated as is evident by the sudden drop in temperature recorded by the top 

sensor in all of the sediment arrays (Figure 2-9). However, it was not until the second rain 

event on 12 July that the sediment became fully and continually saturated, thereby 

significantly increasing its thermal conductivity. At this point, all the top sediment 
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sensors began mimicking the top water layer temperatures rather than the air temperature 

(Figure 2-11). 

After the transition period and filling of the active layer, the hillslope and riparian 

areas became completely saturated and most of the precipitation became surface runoff. 

All water and side tracks maintained continuous surface flow, the pools filled, instream 

flow increased significantly (Figure 2-7b), and all subsurface storage, including riparian 

storage, appeared to be at capacity. The resulting increased instream flows created 

turbulent conditions in the chutes and pools and further aided in mixing the layers within 

each pool (Figure 2-12). With nearly completely mixed conditions, the instream storage 

that had previously resided in the bottom layer of the pools would be exported 

downstream. Complete mixing of the pools was initially achieved on 7 July at a flow rate 

of approximately 15 L s
-1

. Once completely mixed, we expect that all the solutes in the 

bottom layer became entrained in the main stream flow. With the flow rates and water 

surfaces elevated as they were, the export of these solutes from the pools would be 

relatively quick and the only remaining in-pool storage would be stagnant areas near the 

edge of the flooded pools. 

Both surface and subsurface flow paths within our study reach changed depending 

on whether the hillslope and riparian areas were dry or saturated. Under dry conditions, 

the hydrologic connectivity of the hillslope to the riparian zone was indirect through 

minimal diffuse lateral flow. Saturated conditions facilitated direct hydrologic 

connectivity through hillslope surface runoff and surface flow in the water tracks. In 

some cases, the flow from the water tracks also directly connected the hillslopes to the 

pools within the stream. 
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Due to increasingly larger volumes of available storage in the active layer 

surrounding the stream, water from the hillslope was stored in the riparian areas before 

being exported to the stream as diffuse lateral flow during dry conditions. Side tracks, an 

additional form of storage within the riparian zone, would allow water from the pools to 

follow subsurface preferential flow paths during low flow conditions. Conversely, during 

high flow conditions, elevated surface waters would saturate the riparian area sediments 

and the timing of export would be delayed. 

As noted by Zarnetske et al. [2007] and Mc�amara et al. [2008], hydrologic 

processes such as storage and flushing of nutrient rich waters are highly dependent on 

conditions such as the presence of permafrost, high occurrence of waterlogged anoxic 

soils, nitrogen retention in tundra environments, low annual discharge, and snowmelt. 

Overall, we found the extent of water storage and export in these beaded systems to be 

highly variable over both space and time. This variability is dependent on antecedent and 

changing weather conditions which influence hillslope, riparian, and in-pool storage that 

may in turn be influenced by global climate change. 

The role of hillslope storage in Arctic systems is already relatively well 

understood [Mc�amara et al., 1997; Stieglitz et al., 2003], however, the hydrologic 

connectivity of the hillslope to the riparian zone and stream in Arctic watersheds is 

poorly understood. We found that the connectivity is both direct, through water tracks 

and runoff, and indirect, through diffuse lateral flow, and there is significant riparian 

storage of hillslope water. This riparian storage can subsequently influence in-pool 

storage through lateral flow. Conversely, when unsaturated, the available storage in the 

riparian zone can be influenced by exchange with instream water when pool levels 
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increase. Our findings of large in-pool storage due to bead volume, low discharge, and 

thermal stratification concur with Edwardson et al. [2003].  

The timing of the eventual entrainment of water in various storage zones is 

important for nutrient export and the overall health of a watershed.  Changes in the 

amount of water being stored and export dynamics can have basin wide effects, 

impacting chemical and biological rates as well as chemical concentrations downstream. 

These effects are particularly important in nutrient limited Arctic systems and may vary 

drastically given weather variability due to climate change. 

Conclusion 

The purpose of our study was to identify the types and patterns of storage within a 

beaded Arctic stream. We investigated this through tracing water flow paths in and 

around the study reach. Using primarily synoptic measurements of specific conductivity 

and time series temperature profiles, we gained insight into the patterns of wetting and 

drying of the riparian sediments and stratification of the pools during dry to saturated 

conditions. 

As expected, the hydrologic connectivity of the hillslope to the riparian zone is 

both direct, through water tracks and runoff, and indirect, through diffuse lateral flow, 

and results in riparian storage of hillslope water. However, we found that riparian and 

hillslope storage can also subsequently influence in-pool storage through subsurface 

lateral flow. Conversely, when unsaturated, the available storage in the riparian zone can 

be influenced by exchange of instream water when water levels increase.  
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Dry conditions with low flows facilitated greater in-pool storage. This is primarily 

due to strong thermal stratification which produced large stores of cooler water with long 

residence times in the bottom layers of the pools. However, even under high flow 

conditions stratification was still observed in pools due to influences of cold lateral 

inflows. In the earlier portion of the thaw season, this water has the potential to be 

nutrient rich as the bulk of it is most likely from spring melt. Wet conditions with high 

flows resulted in complete or nearly complete mixing of the pools, which resulted in 

large volumes of instream waters flushing the long-term in-pool storage. 

Our results show that the hydrologic connectivity of Arctic watersheds with 

beaded streams, and therefore the storage and export of water and nutrients from and 

within the watershed, is complex and quite dynamic. Overall, we found that the extent of 

water storage and export in the riparian and in-pool areas within these beaded systems are 

highly variable, will greatly influence the timing of material export, and potentially have 

cumulative impacts in the downstream higher order rivers. 
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CHAPTER 3 

MODELING INSTREAM TEMPERATURE VARIABILITY 

IN BEADED ARCTIC STREAMS 

Abstract 

Variation in instream temperatures due to climate change may drastically affect 

the health and stability of aquatic Arctic ecosystems. To better understand temperature 

variation in these systems, the dominant heat sources and sinks must be quantified. This 

study examines the variability of instream temperatures in Imnavait Creek, a beaded 

Arctic stream consisting of small pools connected by shallow chutes, located north of the 

Brooks Range in Alaska. Temperature data were collected vertically within the water 

column of two pools and surrounding bed sediments during stratified conditions. These 

temperature and other supporting data (e.g., instream flow, weather data, and bathymetry) 

have been used to investigate heat fate and transport through the development of an 

instream temperature model. This model includes advective, surface, and bed conduction 

fluxes, simplified vertical exchange between stratified layers, and attenuation of 

shortwave radiation within the water column of a single pool within the stream. We 

present the model formulation, data collection methods used in support of model 

development and population, and a simple approach to model calibration and validation. 

We also provide information regarding residence times of different pool layers and the 

subsequent influence on fate and transport of heat and other constituents of interest (e.g., 

nutrients). We found that the dominant heat sources vary between stratified layers and, 
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through some simple model scenarios, that potential increases in thaw depths surrounding 

these pools can shift stratification, mixing patterns and instream storage dynamics. 

Introduction 

Although mitigation of anthropogenic influences has been the historical 

motivation for studying instream temperatures, climate change, particularly in Arctic 

systems, has become the recent impetus [Webb et al., 2008]. Climate change in the Arctic 

has resulted in seasonal increases in air temperature [Chapman and Walsh, 1993; Serreze 

et al., 2000; Wang and Key, 2003] and changes in precipitation and wind patterns 

[Hinzman and Kane, 1992]. These changes have the potential to impact the land surface 

energy balance through shifts in vegetation and snowmelt patterns [Sturm et al., 2005], 

changes in albedo and depth of thaw in soils [Hinzman et al., 1991], and later freeze and 

earlier thaw of rivers and lakes [Mangnuson et al., 2000]. All of these and other potential 

changes impact the hydrologic system and therefore can influence surface water 

temperatures.  

The effects of changing climate on surface water temperatures are of particular 

interest in the Arctic due to the sensitivity of low energy environments and cold region 

processes [Rouse et al., 1997]. Due to smaller water volumes, headwater beaded Arctic 

streams are more sensitive to climate and surrounding topography. As shown in Chapter 

2, the hydrologic connectivity of hillslope and riparian areas in small headwater beaded 

Arctic streams is dynamic and can influence instream heat budgets. These streams 

experience high instream temperatures, periodic thermal stratification of the pools [Irons 

and Oswood, 1992], and are significantly influenced by the presence of underlying 
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permafrost. To understand the temperature dynamics in these systems, these unique 

characteristics require a more precise definition of the energy budget and inclusion of 

energy flux terms that may otherwise be ignored [Brown, 1969]. Since headwater beaded 

Arctic streams are among the least studied [Oswood et al., 1989] and there is only a loose 

understanding of the physical processes affecting the instream temperature regimes, our 

current abilities to predict the influences of climate change in these systems are limited at 

best. 

Models can be used to estimate the potential effects of climate change on various 

interdependent physical, chemical, and even biological processes of a water body [Rouse 

et al., 1997; Vorosmarty et al., 2001]. When predicting water temperatures, the modeling 

approaches used within streams and lakes are similar. Stream temperature models are 

most often deterministic, one-dimensional in the longitudinal direction, and apply heat 

and mass balances to completely mixed reaches within the river. The energy balances 

within these models include advection and surface fluxes (e.g., QUAL2E [Brown and 

Barnwell, 1987]), though some also include shading corrections, streambed conduction, 

topographic and riparian vegetation radiation, and stream friction (e.g., Heat Source 

[Boyd and Kasper, 2004] and SNTEMP [Theurer et al., 1984]). Lake or reservoir models 

are also often one-dimensional, but exchange occurs in the vertical direction. These 

typically apply mass and energy balances to uniform, completely mixed horizontal layers. 

They also include surface fluxes in the top layer and apply turbulent diffusivity to 

exchange heat and mass between layers (e.g., CEQUAL-R1 [Environmental 

Laboratories, 1990] and LAKE2K [Chapra and Martin, 2004]).   
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Modeling performed on water bodies possessing characteristics of both streams 

and lakes, like beaded streams, must account for site specific combinations of processes 

[Caissie, 2006]. In this paper, a method of modeling instream temperatures was 

developed for a small headwater beaded Arctic stream based on site specific 

observational data and a combined stream/lake modeling approach. This resulted in a 

one-dimensional process based temperature model that allows for the quantification of 

heat fluxes during steady flow conditions. We present the model formulation, data 

collection methods used to support the modeling approach, a simple approach to model 

calibration and validation, and information regarding the dominant heat fluxes within 

each layer. Using the calibrated model, we then provide information regarding residence 

times of different pool layers and the subsequent potential influence on the fate and 

transport of heat and other constituents. Finally, we illustrate some model scenarios based 

on potential climate change impacts. 

Model Formulation 

One of the most effective techniques for predicting the influence of various heat 

sources and sinks on instream temperature is to use an energy budget [Brown, 1969]. 

Along these lines and similar to other lake and reservoir models, this model subdivides 

the pool and adjacent sediments into three horizontal layers with heat exchange between 

the pool layers (Figure 3-1). The bottom layer of sediment is further divided into discrete 

layers in order to apply a finite divided differences scheme [Chapra and Canale, 2006] to 

solve for heat transfer due to conduction from the bottom layer of the pool to the 

permafrost. Since the riparian sediments adjacent to the top two layers of the pool are 
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typically not frozen during the open water season, a simplified estimate of bed 

conduction is applied based on measured boundary condition temperatures at known 

distances from the pool edge. Sources and sinks of heat in the overall energy budget 

include: advection in the top pool layer; surface fluxes across the air-water interface of 

the top pool layer (Jan, Jsn, Jbr, Je, and Jc); attenuation of shortwave radiation within the 

water column of all three pool layers; bed conduction between the pool and associated 

sediment layers (Jbed); and vertical exchange between pool layers (Figure 3-1). 

 

 

Figure 3-1. Conceptual model of the pool showing advective inflow and outflow, surface 

fluxes, sediment fluxes, attenuation of shortwave radiation, and pool and sediment layers. 
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The model assumptions include completely mixed layers within the pool; 

isotropic sediment thermal properties; advection in the top layer only (i.e., no plunging) 

due solely to volumetric inflow and outflow (i.e., no advective mixing); heat transfer 

between pool layers based on a simple exchange formulation presented within Chapra 

[1997] due to small surface area, short fetch, and high, protective banks; simplified 

estimates of bed conduction between sediments and associated pool layers; and constant 

volume of all layers. 

The heat balance resulting from these assumptions can then be written for each 

layer of the pool (see the Appendix for full derivation): 

Pool Layer 1:  
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The subscripts 1, 2, 3, in, s, perm, atm, sed, and ave specify the top, middle and bottom 

layer of the pool or sediment, inflow, surface, permafrost, atmospheric, sediment, and 

average, respectively. These equations were solved numerically using Euler’s Method. 

Using a finite divided-difference method [Chapra and Canale, 2006], the heat balance 

for the sediment volume below the pool with n incremental layers is: 

Sediment Top Layer, n=1: 

 

�����,�
�� =  )��� 2�# − 5����,� + 4����,# − ����,,!

∆"����  (4)  

Sediment Layers n=2 to n-1: 

 

�����,	
�� =  )��� ����,	.� − 2����,	 + ����,	/�!

∆"����  (5)  

Sediment Bottom Layer, n=n: 

 

�����,	
�� =  )��� 2���0� − 5����,	 + 4����,	.� − ����,	.�!

∆"����  (6)  

where T = temperature ( ̊C), Q = volumetric flow rate (m
3
 day

-1
), V = volume of the layer 

(m
3
), ρ = density of the water (g m

-3
), Cp = heat capacity of the water (cal g

-1
  ̊C

-1
), As = 

surface area of each layer of the pool (m
2
), ν = the vertical heat transfer coefficient (m 

day
-1

), K = thermal conductivity of the sediment (cal m
-1

  ̊C
-1

 day
-1

), αsed = thermal 

diffusivity of the sediment (m
2
 day

-1
), z = depth (m), ∆zsed = incremental depth of the 

sediment used in the finite difference calculations (m), Jatm = total surface flux (cal m
-2

 

day
-1

), Jsn,i = shortwave solar radiation (cal m
-2

 day
-1

) of each layer due to attenuation and 

is defined as 
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 ��	,� = ��	12343  (7) 

where Jsn = net measured incoming less reflected shortwave solar radiation (cal m
-2

 day
-1

) 

and λi= broad spectrum shortwave solar radiation attenuation coefficient for each layer (i) 

(m
-1

). The total surface flux (Jatm) is further defined as 

 ���� =  ��	,� + ��	 − �50 − �6 − ��  (8) 

Note that the total surface flux term is only applicable to the top pool layer (i=1) and 

therefore only includes Jsn,1. The remaining surface flux terms, Jan = net atmospheric 

longwave radiation, Jbr = longwave back radiation from the water, Jc = conduction and 

convection, and Je = evaporation and condensation are defined as 

 ��	 = 7����0 + 273�, � + 0.031:1��0!�1 − ;<�
10000  (9)  

 �50 = =7��� + 273�,

10000  (10) 

 �6 = >�?�@A���� − ���0�
10000  (11) 

 �� = ?�@A��1��� − 1��0�
10000  (12) 

where σ = Stefan-Boltzmann constant (11.7 x 10
-8

 cal cm
-2 

day
-1

 K
-1

), A = atmospheric 

attenuation coefficient (0.5 to 0.7), e = vapor pressure (mmHg), RL = reflection 

coefficient (≌ 0.3), ε = emissivity of the water (≌ 0.97), c1 = Bowen’s coefficient (≌ 0.47 

mmHg C
-1

), and Uw = wind speed (m s
-1

) measured at a distance of 7 m above the water 

surface. 
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The dependence of heat transfer on wind velocity over the water surface is 

defined by f(Uw); a definition for this relationship suggested by TVA [1972] is 

 @A =  @A4 C 7
"A

D
E.�F

 
(13) 

 ?�@A� =  19.0 + 0.95@A�  (14) 

where Uwz = wind speed (m s
-1

) measured at a given distance of zw (m) above the water 

surface. 

The site or pool specific inputs for this model include: pool bathymetry (pool 

layer depth, z, volume, V, surface area, As, and surface area of the sediment, As,sed); 

influent water temperature, Tin; volumetric flow rate, Qin and Qout; and weather data (air 

temperature, Tair, wind speed, Uw, relative humidity, Rh, and incoming and reflected 

shortwave solar radiation, Jsn). Constants for this model include: specific heat, Cp, and 

emissivity of water, ε; atmospheric attenuation, A, and reflection coefficients, RL; Stefan-

Boltzmann constant, σ; Bowen’s coefficient, c1; thermal conductivity, Ksed, and 

diffusivity, αsed, of the sediment; and temperature of the permafrost, Tperm. Parameters 

requiring calibration include the broad spectrum shortwave solar radiation attenuation 

coefficients, λ, and the vertical heat transfer coefficients, ν. 

Because these pools have been found to be polymictic during the open water 

season, this phenomenon must be accounted for in the model formulation. Typical 

approaches applied within lake modeling were found to be inappropriate for well 

protected pools with very small surface areas (e.g., use of the Richardson number). 

Therefore, we incorporated a simple density gradient threshold at which pool layers 



 

45 

  

 

would mix. When the threshold is met, we use a simple mixing algorithm that applies a 

mass weighted approach: 

 ��,�/� =  ����
� + ��/���/�
�/�
��
� + ��/�
�/�

 
(15) 

Values for the density of water for each pool layer (ρi) were calculated within the 

model at every time step using the equations in the Appendix and also found in Chapra 

and Martin [2004].  

Methodology 

Site Description 

This study applies this newly formulated temperature model to investigate the 

variability of pool temperature regimes in Imnavait Creek, a beaded stream located north 

of the Brooks Range on the north slope of Alaska in the Kuparuk River basin at 68.616°N 

latitude and 149.318°E longitude (Figure 3-2). Imnavait Creek flows north into Kuparuk 

River and then into the Arctic Ocean. Beaded streams, like Imnavait Creek, form when 

massive ground-ice deposits are exposed due to erosion by the stream [Mc�amara et al., 

1998]. 

This part of Alaska is wetland tundra and is completely underlain by several 

hundred meters of permafrost [Osterkamp and Payne, 1981], or permanently frozen 

ground. The top layer of soil, an organic peat layer 10 – 50 cm thick, overlies glacial till 

[Hinzman et al., 1991]. The upper portion of the ground that experiences the freeze-thaw 

cycle, known as the active layer, typically reaches depths of approximately 25 – 40 cm in 

this area though depths of up to 100 cm have been recorded [Hinzman et al., 1991]. 
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Figure 3-2. Greater Kuparuk Watershed showing the location of Imnavait Creek. 

(Courtesy of Doug Kane) 

 

The area is effectively isolated from deep groundwater as the only subsurface storage and 

flow occur in the shallow active layer [Edlund et al., 1990]. Although precipitation events 

and the associated surface and subsurface flow do occur during the open water summer 

season, the local hydrology is dominated by ablation of the snowpack [Kane et al., 1989]. 

Data Collection 

 Several high spatial resolution datasets were collected within the pools, chutes 

and riparian area of Imnavait Creek in order to obtain detailed information on specific 

processes to support model formulation and population. This data was collected during a 

dry, low flow period from 1 – 6 July, 2010. We focused on this period because it is 

during this time that the limiting conditions of the temperature model assumptions hold 
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and stratification dynamics are such that they influence storage and export of water and 

other constituents of interest (e.g., nutrients). Additionally, this is the time of year when 

instream temperatures may be limiting habitat due to minimal precipitation and 24 hours 

of daylight. 

This paper focuses on the datasets from a single pool in the creek having a surface 

area of approximately 3 m
2
 and a depth of less than 1 meter. Given the simplifying 

assumptions of the model, this pool was selected for its apparent simplicity and the need 

to test basic instream processes without additional influences (e.g., lateral inflows due to 

water tracks or permafrost thaw). Once the dominant processes are determined and the 

model is developed for a single pool, we can then connect a series of pools to represent a 

stream reach.   

Temperature Data 

To understand the temperature dynamics within the water column, Onset
®

 HOBO 

Water Temp Pro V2
™

 (Bourne, MA) temperature sensors were placed vertically within 

the pool (accuracy = 0.2 ºC over 0 to 50 ºC and resolution = 0.02 ºC at 25 ºC). 

Temperature in the water column was recorded every 5 minutes by 19 sensors at fixed 

depths approximately 3 cm a part in order to capture precise timing and vertical location 

of pool stratification. The sensors were wrapped in aluminum foil to avoid heating due to 

radiation penetration within the water [�eilson et al., 2010b]. Temperature in the water 

column was also verified several times throughout the study using a Fluke
®

 5610
™

 

thermistor (American Fork, UT) (accuracy = 0.01 ºC and resolution = 0.0001 ºC over 0 to 

100 ºC) by measuring water temperature at 1 cm increments. These measurements were 
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consistent with those recorded by the HOBOs verifying that the HOBO sensors were not 

significantly affected by solar heating. 

Soil temperature vertical arrays were installed to establish boundary conditions 

for the riparian sediments. Onset
®

 HOBO Water Temp Pro V2
™

 thermistor temperature 

sensors were used to record the temperature in the sediment every 5 minutes. The 

installation methods and depths used were similar to those described in �eilson et al. 

[2009]. The sensors for these sediment temperature arrays were placed in capped and 

perforated 1.5” PVC pipe at depths of at 3, 9, and 20 cm. The sensors were isolated 

vertically from each other so as to measure temperature at a specific depth. The intent of 

this configuration was to allow for lateral flow through the pipe, but prohibit vertical flow 

within the pipe. There were 4 sediment arrays buried around the pool for a total of 12 

sensors. 

Additional Data Types 

Other data types were required in addition to temperature to document the 

ambient stream conditions. Weirs were installed at the inlet and outlet of the pool to 

facilitate measurement of volumetric flows. The low instream flow necessitated 

measurement using a simple bucket method where a 1 liter beaker was used to capture 

water flowing over the weirs. Air temperature and relative humidity measurements at 1, 

3, and 10 meter heights were recorded hourly using Campbell Scientific
®

 Model 207 

(Logan, UT) temperature (accuracy = 0.4 ºC over -36 to 49 ºC)  and humidity (accuracy = 

5% over 12 to 100%) sensors from a meteorological station on the west-facing ridge of 

the basin approximately 1 kilometer upstream of the study site. An average value of the 
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measurements at the three heights for each sample increment was used as forcing data 

within the model. Wind speed was measured at approximately 40 cm above the water 

surface within the study reach using a Campbell Scientific
®

 WindSonic
™

 Anemometer 

(Logan, UT) (accuracy = 2% of the reading over 0 to 60 m s
-1

). Incoming shortwave solar 

radiation and water surface albedo were measured using two Hukseflux
®

 LP02 (Logan, 

UT) pyranometers located just above the surface of a pool upstream of the study pool to 

ensure an undisturbed water surface. Shortwave solar radiation penetration through the 

water column was measured in 2009 to calculate an attenuation coefficient using methods 

similar to those found in �eilson et al. [2009; 2010a]. A detailed site survey including 

bathymetry was performed using a Trimble
®

 GPS (Dayton, OH) system. From this high 

resolution geometric information, we were able to produce depth isopleths at 5 cm 

increments which were further interpolated within the model to calculate volumes (Vi) 

and surface areas (As,i). Thaw depths in and around the pools were measured using a 

graduated probe. 

Model Population 

In addition to providing specific information about heat fluxes between the pool 

and sediment layers, the field study provided information necessary to populate the 

temperature model. Vertical temperature profiles were created using data from the 

temperature sensors placed within the pool water column. These vertical profiles were 

then used to estimate the depths at which the temperature profile of the pool consistently 

changed. These depths represent the boundaries of the pool layers (zi) within the model. 

With the depth of each pool layer established, the bathymetric data was interpolated 
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within the model to determine the volume (Vi), surface area of the layer-layer interface 

(As,i), and wetted sediment surface area (As,sed,i) of the pool layers. Once the geometry of 

the pool layers was established, the average observed temperatures of each layer were 

calculated using the associated sensors for use in model calibration and validation. 

Analysis of the detailed vertical water temperature array data also revealed information 

regarding diel mixing between layers occurring within the pool. This information was 

used to set the density gradient threshold for mixing within the model.  

Average soil temperatures at depths of 3, 9, and 20 cm were calculated using all 

four vertical soil temperature arrays. These average soil temperatures were then used to 

fit a linear regression to represent a vertical temperature profile of the riparian sediments. 

The temperature of the sediments (Tsed,1 and Tsed,2 in eqs. 1 and 2) at the average depths 

corresponding to the top and middle pool layers were then established from this 

regression. Because the distance from the vertical soil temperature arrays to the pool edge 

was known (zsed,1 and zsed,2 in eqs. 1 and 2), these soil temperatures were then used as 

boundary conditions for the estimate of bed conduction between the riparian sediments 

and associated pool layers. 

Depth of thaw beneath the pool (zsed,3 in eq. 3) was based on a single measurement 

of sediment depth using a graduated probe at approximately the same time of year in 

2009. Distance above the water surface at which wind speed was measured (zw in eq. 13) 

was approximately 0.4 m. The value used for the inlet and outlet volumetric flow rates 

(Qin and Qout in eqs. 1 and 2) was an average of the values measured at the inlet weir over 

the first four days of the field study. Temperature of the permafrost (Tperm in eq. 6) was 

assumed to be 0 ºC. 
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 Certain values used in the model were published values, either taken as a fixed 

constant or an estimated average. For example, the values for emissivity of water (ε), the 

atmospheric attenuation (A) and reflection coefficients (RL), Stefan-Boltzmann constant 

(σ), and Bowen’s coefficient (c1) were taken from Chapra [1997]. The values for the 

thermal conductivity (Ksed) and diffusivity (αsed) of the sediment were estimated as 

averages of those values found to be representative [Chapra and Martin, 2004; Hinzman 

et al., 1991; Kane et al., 1991]. 

Model Calibration 

Model calibration was performed using the dataset from 1 – 3 July based on a 

sum root mean square error (RMSE) objective function. Individual RMSE values were 

calculated for all three pool layers which were then summed for each individual 

simulation. To determine the most appropriate combination of parameters that resulted in 

the smallest sum RMSE, ranges for the primary calibration parameters (shortwave solar 

radiation attenuation coefficients (λ) and vertical heat transfer coefficients (ν)) needed to 

be established. Ranges of these parameters were determined either from field data or 

based on a simple sensitivity analysis. To sample the parameter space, each parameter 

was incremented within its range and all unique combinations of parameters were 

established. Simulations were then run for each parameter combination and sum RMSE 

values were calculated. The most appropriate calibration parameter set was then chosen 

based on the lowest sum RMSE value. 

Parameter ranges for the broad spectrum shortwave solar radiation attenuation 

coefficients were based on a field measurement in a 2009 study of approximately 9 m
-1

. 
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However, the antecedent conditions in the 2010 study differed from those in 2009 

resulting in variable water quality (e.g., DOC and TSS concentrations) and, therefore, 

different attenuation. Additionally, the attenuation within a pool is hypothesized to vary 

with depth due to stratification and the differences in water quality. With this 

information, the range set for the shortwave solar radiation attenuation coefficients was 9 

– 20 m
-1

 and parameter combinations within model calibration were established based on 

1 m
-1

 increments. 

Published values for vertical heat transfer coefficients were found for large water 

bodies no shallower than depths of ~10 meters [e.g., Chapra, 1997]. Because no values 

were found for shallow, stratified water bodies with small surface areas, a first run 

calibration was performed using a large range for the vertical heat transfer coefficients of 

0 – 1 m day
-1

 from which parameter combinations were established based on course 

increments of 0.1 m day
-1

.  After the initial calibration, this was refined to ranges equal to 

or less than 0.2 m day
-1

 at increments of 0.01 m day
-1

. Validation of the model was based 

on comparison of model results from 4 – 6 July using the calibrated parameters. 

 Once the model was validated, characteristic times of the bottom pool layers, τc,i, 

were calculated. For layers 2 and 3, the following relationship was used 

 H6,� =  ��.�,���,�

�

 
(16) 

The average residence time for layer 1 was calculated as 

 
H� =  ��	


�
 (17) 
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Climate Change Scenarios 

With the validated model we conducted simple climate change related scenarios 

to quantify the potential influence of these changes on instream temperatures and 

stratification patterns. According to several publications [e.g., Chapman and Walsh, 

1993; Serreze et al., 2000; Wang and Key, 2003], average temperatures at high latitudes 

have increased by up to 2 ºC over the last few decades and response of the Arctic to this 

continuing trend is predicted to become amplified. To estimate the potential effect of this 

change, the forcing data for air temperature (Tair) was changed by ±2 ºC. The second 

scenario simulates the potential impact of changes in depth of thaw due to climate change 

[Hinzman et al., 1991] by changing the depth of the bottom sediment layer (zsed,3) by ±20 

cm.  

Results 

 At the beginning of the field study when conditions were dry and flows were low, 

the pool was strongly stratified throughout the entire water column during the day while 

the upper portion would mix nightly (Figure 3-3). When precipitation occurred, solar 

radiation levels and air temperature were low and the pool would mix, sometimes 

completely as can be seen on 6 – 8 July. After 6 July, the increase in volumetric flow rate 

due to precipitation raised the water level in the pool significantly (by more than 20 cm) 

thereby changing the volume of the pool and its layers. Since this drastic change in pool 

volume violated the model formulation assumption of constant volume, our simulation 

period only spanned 1 – 6 July. 
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Model Population 

Figure 3-4 presents the temperature profiles of the pool created using the vertical 

water temperature array data. There are two obvious breaks in the series of profiles at 

depths of approximately 20 and 40 cm. These depths represent the boundaries imposed 

on the pool layers in the model (z2 and z3) thereby defining the volumes of all three 

completely mixed layers of the pool. Values for volume (Vi), surface area of the layer-

layer interface (As,i), and wetted sediment surface area (As,sed,i) of the pool layers were 

calculated within the model by interpolating the bathymetric data based on the input 

values of the depth of the pool layers (Table 3-1). 

 
Figure 3-4. Vertical water temperature profiles of the pool at six hour increments 

throughout the study. The darkest line represents the earliest profile on 1 July and 

midnight; subsequent lines become lighter with the date and time of each profile. 
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Table 3-1. Values Used In Model Population Including Calculated/Interpolated Values, 

Constants, and Calibrated Parameters 

Variable Value Units Variable Value Units Variable Value Units 

z1 0 m As,1 10.294 m
2
 Qin,out 44.4 m

3
 d

-1
 

z2 0.2 m As,2 5.846 m
2
 Ksed 1.93x10

4
 cal d

-1
 m

-1
 ºC

-1
 

z3 0.4 m As,3 2.702 m
2
 αsed 0.025 m

2
 d

-1
 

zsed,1,2 0.5 m As,sed,1 5.228 m
2
 Cp 1 cal g

-1
 ºC

-1
 

zsed,3 0.55 m As,sed,2 3.69 m
2
 σ 11.7x10

-8
 cal d

-1
 cm

-2
 K

-1
 

V1 1.592 m
3
 As,sed,3 3.018 m

2
 A 0.6 - 

V2 0.836 m
3
 ν1,2 0.14 m d

-1
 RL 0.3 - 

V3 0.278 m
3
 ν2,3 0.11 m d

-1
 ε 0.97 - 

Tsed,1 10 ºC λ1 14 m
-1

 c1 0.47 mmHg ºC
-1

 

Tsed,2 7 ºC λ2 12 m
-1

 zw 0.4 m 

Tperm 0 ºC 
   

∆ρ 20 g m
-3

 

 

The temperature profile of the riparian sediments created from the vertical 

sediment temperature array data provided a way to estimate temperatures of the top (Tsed,1 

= 10 ºC) and middle (Tsed,2 = 7 ºC) sediments. The approximate distance of the four 

vertical sediment temperature arrays from the pool edge (zsed,1,2) was set in the field at 0.5 

m. The volumetric flow rate of the stream (Q) was calculated as the average of measured 

rates from the field. The value for specific heat of water (Cp) and temperature of the 

permafrost (Tperm) were assumed. Based on the diel mixing occurring in the top layers of 

the pool, it was found that when the difference in density between pool layers (∆ρ) 

became less than 0.00002 g cm
-3

, mixing occurred between the appropriate layers (Table 

3-1). 

Values reported in various publications for the thermal conductivity (Ksed) and 

diffusivity (αsed) for the sediments within the Imnavait Creek watershed are presented in 
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Table 3-2. The average values (1.93x10
4
 cal day

-1
 m

-1
 ºC

-1
 and 0.025 m

2
 day

-1 
for the 

thermal conductivity (Ksed) and diffusivity (αsed), respectively) were used in the modeling 

effort. 

 

Model Calibration and Validation 

The parameter set established in model calibration was based on the lowest sum 

RMSE of 0.92  ̊C, resulting in parameter values of 0.14 and 0.11 m day
-1

 for the vertical 

heat transfer coefficients (ν1,2 and ν2,3) and 14 and 12 m
-1

 for the shortwave solar 

radiation attenuation coefficients (λ1 and λ2) (Figure 3-5). In addition, RMSE values for 

the middle and bottom layer from the calibration dataset are within the accuracy of the 

temperature sensors used to generate the observational datasets (Figure 3-5). The 

residence times calculated for the pool layers based on the calibration parameter set and  

 

Table 3-2. Published Values for Thermal Conductivity and Diffusivity of Sediment 

Unpublished Values Are Denoted With an (*) 

Publication 
αsed Ksed 

Location 
m

2
 d

-1
 

cal d
-1

 m
-1

 C
-1

 

(x10
4
) 

Kane et al.  * 2.27 within upper 0.6 m near Toolik Lake 

[1991] * 2.68 beyond the upper 0.6 m near Toolik Lake 

Hinzman et at.  * 1.96 saturated organic 

[1991] * 1.14 mineral soils 

Chapra and  0.0104 0.778 wet peat 

Martin  0.0173 0.950 gelatinous lake sediments 

[2004] 0.0518 3.72 loam (75% saturated) 
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Figure 3-5. Model results using the calibrated parameter set based on the lowest sum 

RMSE and average temperature measurements from sensors corresponding to the model 

layers. Where i=1 is layer 1, i=2 is layer 2, and i=3 is layer 3. 

 

using equations (17) and (18) are 0.9 h, 24.5 h, and 22.5 h for the top, middle and bottom 

layers, respectively. 

 With the model populated and calibrated, it was then validated against field 

observation data from 4 – 6 July (Figure 3-5). As can be seen in the calibration dataset 

from 1 – 3 July, the estimated temperatures of all three layers are within a degree of 

observed temperatures. Also, timing of the diel cycle and mixing of the layers are near 

observed timing. The same can be said for the validation dataset from 4 – 6 July other 

than the overestimation on 6 July for all three pool layers. However, 6 July marks the 

beginning of the transition point at which consistent precipitation began and the model 

assumptions no longer hold true. Overall for both calibration and validation datasets, the 
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upper layer overestimates the peaks, the middle layer slightly underestimates the peaks, 

the timing of the diel cycle of the lower layer is slightly off, and the timing of mixing of 

the layers is somewhat delayed at times. However, given the simple treatment of complex 

hydrodynamics within the system, the closeness of fit suggests that the dominant heat 

transfer mechanisms are represented within the model. 

The various heat fluxes calculated in the model for each pool layer are vastly 

different (Figure 3-6). Although each layer is driven by a different heat flux throughout 

the day (Figures 3-6 and 3-7), all fluxes within each layer account for more than 10% of 

the total heat flux per layer. The exception to this is the first layer, which is 

overwhelmingly driven by the atmospheric and advective fluxes. Depending on the time 

of day, the second layer is driven primarily by either the atmospheric flux or exchange 

with the bottom layer. The bottom layer is largely driven by the sediment flux. 

The atmospheric fluxes were further broken down (Figure 3-8) to quantify the 

individual influence within each layer. The shortwave solar radiation for each pool layer 

(Figure 3-8a) provides a glimpse on the influence of attenuation of radiation through the 

water column. The atmospheric heat fluxes for the top pool layer (Figure 3-8b) illustrate 

the relative importance of each of these terms (Jan, Jsn, Jbr, Je, and Jc) within the total 

surface flux (Jatm) and, therefore, on the energy budget for the top layer. 
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Climate Change Scenarios 

The first climate change scenario accounted for changes in air temperature by ±2 

ºC (Figure 3-9). The second scenario simulated changes in depth of thaw by changing the 

depth of the bottom sediment by ±20 cm, which is a potential impact of changing air 

temperatures. This scenario resulted in drastic changes in temperatures in the water 

column, particularly the lower layers that have greater contact area with the sediments 

(Figure 3-10). The resulting changes in pool layer temperatures affect both the pattern 

and timing of mixing of layers, which subsequently affects the water residence time of 

each layers. 

 

 

Figure 3-9. Climate change simulation results for changing air temperature by ±2ºC. 

Where i=1 is layer 1, i=2 is layer 2, and i=3 is layer 3. 
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Figure 3-10. Climate change simulation results for changing depth of thaw by ±20 cm. 

Where i=1 is layer 1, i=2 is layer 2, and i=3 is layer 3. The 55 cm depth is associated with 

the original calibration. 

 

Discussion 

Given the thermal stratification and diel mixing observed in field data (Figures 3-

3f and 3-4), the pools in this stream do not follow a distribution of heat fluxes typical of 

stream/lake systems [Caissie, 2006; Johnson, 2004; �eilson et al., 2009; Webb et al., 

2008]. It was therefore necessary to develop a site specific modeling approach in order to 

incorporate the heat flux terms required of the small size and unique characteristics of 

beaded streams (e.g., high instream temperatures, thermal stratification, and presence of 
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permafrost). The result was a distribution of heat fluxes that differ significantly per layer 

(Figure 3-6). For example, the magnitude of absorbed radiation within each layer varies 

(Figure 3-8a), however, this heat flux within each layer is considerable (Figure 3-6). 

While photosynthetic active radiation (PAR) attenuation through the water column is 

important when modeling the photic zones of lakes [Dodds, 2002], the impact of 

shortwave radiation penetration is rarely accounted for in the heat budgets (e.g., 

CEQUAL-R1 [Environmental Laboratories, 1990], and LAKE2K [Chapra and Martin, 

2004]) because it is reasonable to assume all radiation is absorbed within the top layer of 

a deep lake. Similarly, shortwave radiation penetration is rarely accounted for within 

stream models (with the one known exception of HeatSource [Boyd and Kasper, 2004]). 

Within this application, we found that excluding shortwave radiation attenuation in the 

model formulation would have resulted in all radiation being absorbed in the top layer 

and, therefore, too high of temperatures in that upper layer. Additionally, temperatures 

within the lower layers would have been underestimated. Another heat flux that 

influences the lower layers is bed conduction, which is rarely influential in modeling 

temperatures within lakes or large rivers (e.g., CEQUAL-R1 [Environmental 

Laboratories, 1990], LAKE2K [Chapra and Martin, 2004], QUAL2E [Brown and 

Barnwell, 1987], and SNTEMP [Theurer et al., 1984]). This emphasizes the importance 

of collecting process specific data to support model conceptualization.  

Through use of these data in model conceptualization and development, we 

identified a number of datasets that were imperative to accurate temperature predictions. 

First, we found that the model is sensitive to the volumes (V) and surface areas (As) of the 

pool and sediment layers. Therefore, it is important to obtain high resolution bathymetry 
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and temperatures in the water column in order to determine these values. Also, by 

collecting site specific broad spectrum shortwave radiation attenuation measurements at a 

fine vertical resolution, layer specific attenuation coefficients can be determined and 

parameter uncertainty can be reduced.  

Final model calibration parameters were determined using the lowest sum RMSE 

as our optimal objective function. However, several parameter sets resulting in similar 

model fits could have been used. The parameter ranges representing sum RMSE values 

less than 1 ºC were: 0.11 – 0.15 m d
-1

, 0.09 – 0.13 m d
-1

, 14 – 15 m
-1

, and 11 – 13 m
-1

 for 

the vertical heat transfer (ν1,2 and ν2,3) and broad spectrum shortwave radiation 

attenuation coefficients (λ1 and λ2), respectively. These relatively small ranges suggest 

that the parameter uncertainty is acceptable within this application. 

The first model simulation scenario represented climate change using changes in 

air temperature (Tair) based on recent meteorological trends found in the Arctic (i.e., 

seasonal increases in air temperature [Chapman and Walsh, 1993; Serreze et al., 2000; 

Wang and Key, 2003]). The results of these simulations show that there is little direct 

impact on instream temperatures with the forced changes (Figure 3-9). Based on the 

model formulation, the only equations including air temperature are for calculating the 

net atmospheric longwave radiation (Jan in eq. 9) and the conduction and convection (Jc 

in eq. 11). Similarly, increases in wind speed [Hinzman and Kane, 1992] would only 

influence conduction and convection (Jc in eq. 11) and evaporation and condensation (Je 

in eq. 12). In both cases, the magnitudes of the terms affected by air temperature and 

wind speed (Jan, Jc, and Je) relative to incoming net solar shortwave radiation (Jsn) are 

small and, therefore, will likely have little impact on the total surface flux (Jatm) of the top 
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pool layer. Drastic changes in wind speed may, however, result in different mixing 

patterns due to shear stress at the water surface. 

Simulating climate change by simply changing the air temperature or increasing 

wind speed does not represent the entirety of changes that would occur within the 

watershed due to shifting weather patterns (e.g., higher instream flows [Mangnuson et al., 

2000], more runoff due to snowmelt [Sturm et al., 2005], changes in depth of thaw 

[Hinzman et al., 1991], etc.). Therefore, the second scenario represented a more holistic 

influence on the watershed due to changing climate conditions through changes in depth 

of thaw (zsed,3). The depth of thaw only directly influences the sediment flux in the bottom 

pool layer (eq. 3), however, it is the dominant heat flux for that layer (Figures 3-6 and 3-

7). The results of these simulations show that changing the depth of thaw heavily 

influences overall instream temperatures primarily due to changes in temperature of the 

bottom layer that influences stratification and mixing patterns. The net result of these 

changes would be a shift in the timing of water export, which impacts the fate and 

transport of heat, nutrients, and other constituents of interest.  

As shown in Chapter 2, lateral inflow from the active layer due to precipitation 

can also change stratification and mixing patterns. Pool temperatures can be influenced 

by lateral inflow from storage in the active layer, which is impacted by the depth of thaw 

[Mc�amara et al., 1997]. We also anticipate that changes in precipitation patterns 

[Hinzman and Kane, 1992] will affect storage in the active layer and therefore drastically 

influence lateral inflows. Both of which can further impact temperature and export 

dynamics. There was shown to be little or slowed movement of water into and out of the 

lower layers of the pools in this stream when stratified. This slowed movement and 
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exchange between layers represents longer storage and residence times. The marked 

difference in calculated residence times of the top and lower layers of the pool in this 

study support this finding (Figure 3-5). 

Dynamics of storage and export of water highly influence the movement of heat 

and mass through watersheds [Mc�amara et al., 1998]. This is significant because it 

impacts the movement of nutrients, which are limiting in most Arctic systems [Brooks 

and Williams, 1999; Chapin et al., 1980; Dowding et al., 1981; Kling, 1995; Satoru et al., 

2006]. Changes in storage and residence times can have basin wide effects, from 

impacting instream temperatures during critical times to changes in chemical and 

biological processes downstream. These effects suggest that Imnavait Basin and similar 

beaded Arctic watersheds will experience delayed export of water and other constituents 

compared to other stream types within the Arctic. 

Conclusion 

The purpose of our study was to investigate instream heat fate and transport in a 

beaded Arctic stream through the development of a temperature model, which includes 

advective, surface, and bed conduction fluxes, simplified vertical exchange between 

stratified layers, and attenuation of shortwave radiation through the water column. The 

model provides a simplified representation of temperature stratification and mixing 

patterns under steady low flow conditions within a small pool in a beaded stream located 

on the North Slope of Alaska. Collection of several high resolution datasets was 

necessary to support model conceptualization and development. Given the thermal 

stratification and diel mixing observed in these data, we concluded that the pools in this 
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stream do not follow a distribution of heat fluxes typical of stream/lake systems. Because 

of this and due to the small size and unique characteristics of the stream (e.g., high 

instream temperatures, thermal stratification, and presence of permafrost), heat flux terms 

that would otherwise be ignored were required in the energy balance for model 

formulation. This relatively simple approach produced model results that capture the 

temperature responses observed within our calibration and validation datasets. We found 

that key data within this modeling effort include attenuation of shortwave radiation 

through the water column, high resolution temperatures in the water column, and high 

resolution bathymetry. 

The results from our climate change scenarios show that air temperature has little 

effect on instream temperatures in beaded Arctic streams. However, changes in depth of 

thaw heavily impact instream temperatures, particularly in the lower pool layers that have 

greater contact area with the sediments. The changes in temperature of these lower layers 

affect the stratification and mixing patterns, which influence export of water and 

therefore fate and transport of heat, nutrients, and other constituents of interest. 

 



 

70 

  

 

CHAPTER 4 

CONCLUSION 

The purpose of this study was to investigate the fate and transport of mass and 

heat within a beaded Arctic stream. This was investigated through identification of water 

storage types and patterns by tracing water flow paths in and around the study reach. 

Using primarily synoptic measurements of specific conductivity and temperature profiles, 

we gained insight into the patterns of wetting and drying of the riparian sediments and 

stratification of the pools during dry to saturated conditions. Heat fate and transport was 

further investigated through the development of a temperature model, which includes 

advective, surface, and bed conduction fluxes, simplified vertical exchange between 

stratified layers, and attenuation of shortwave radiation through the water column of a 

single pool within the beaded stream. 

As expected, the hydrologic connectivity of the hillslope to the riparian zone 

within this beaded Arctic watershed is both direct, through water tracks and runoff, and 

indirect, through diffuse lateral flow, and results in riparian storage of hillslope water. 

However, we found that riparian and hillslope storage can subsequently influence in-pool 

storage through subsurface lateral inputs. Conversely, when unsaturated, the available 

storage in the riparian zone can be influenced by lateral exchange of in-pool water when 

instream water levels increase.  

Dry conditions with low flows facilitated greater in-pool storage and increased 

water residence times. This is primarily due to strong thermal stratification which 

produced large stores of cooler water with long residence times in the bottom layers of 
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the pools. However, even under high flow conditions, stratification was still observed in a 

pool influenced by cold lateral inputs. In the earlier portion of the thaw season, this water 

has the potential to be nutrient rich as the bulk of it is most likely from spring melt. Wet 

conditions with high flows resulted in complete or nearly complete mixing of the pools, 

which resulted in large volumes of instream waters flushing the long-term in-pool 

storage. 

The temperature model developed within this thesis provides a simplified 

representation of the temperature stratification and mixing patterns observed under steady 

low flow conditions. Collection of several high resolution datasets was necessary to 

support model conceptualization and development. Given the thermal stratification and 

diel mixing observed in the instream temperatures, we concluded that the pools in this 

stream do not follow a distribution of heat fluxes typical of stream/lake systems. Because 

of this and due to the small size and unique characteristics of the stream (e.g., high 

instream temperatures, thermal stratification, and presence of permafrost), heat flux terms 

that would otherwise be ignored were required in the energy balance for model 

formulation. This relatively simple approach produced model results that capture the 

temperature responses observed within our calibration and validation datasets. We found 

that key data associated with this modeling effort include attenuation of shortwave 

radiation through the water column, high resolution temperatures in the water column, 

and high resolution bathymetry. 

The results from the climate change scenarios show that air temperature and wind 

speed have little effect on instream temperatures in beaded Arctic streams. However, 

changes in depth of thaw heavily impact instream temperatures, particularly in the lower 
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pool layers that have greater contact area with the sediments. The changes in temperature 

of these lower layers affect the stratification and mixing patterns, which influence export 

of water and therefore fate and transport of heat, nutrients, and other constituents of 

interest. 

This study has shown that the hydrology of Arctic watersheds with beaded 

streams is complex and quite dynamic. Overall, we found that the extent of water storage 

and residence times within these beaded systems are highly variable and greatly influence 

the timing and patterns of thermal stratification and mixing patterns and, therefore, 

influence water and material export dynamics. These dynamics are important due to the 

implications on downstream processes including impacts on ecology, fisheries, local 

subsistence residents, and nutrient export to the Arctic Ocean. 
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CHAPTER 5 

ENGINEERING SIGNIFICANCE 

This research presents advances in the fields of Environmental and Water 

Resources Engineering by providing insight into processes involving the fate and 

transport of heat and mass in beaded Arctic streams. This was accomplished through 

analysis of observational data and development of an instream temperature model. Due to 

the sensitivity of low energy environments and cold region processes [Rouse et al., 1997], 

the effects of changing climate are of particular interest in the Arctic. However, beaded 

Arctic streams are among the least studied [Oswood et al., 1989] and, therefore, our 

abilities to predict the impacts of climate change on these systems have been limited. 

Observational data collected in support of model conceptualization and 

development offered an unexpected glimpse into the unique water storage and export 

patterns in beaded Arctic streams. Using temperature and various other data, we were 

able to document various types of storage within the pools, banks, and other marshy areas 

within the riparian zone, including subsurface flow paths that connect the pools. In doing 

so, we were able to capture patterns of stratification and mixing within the pools during a 

critical meteorological period transitioning from dry to wet conditions. It was found that 

these patterns influence water storage within the pool, which subsequently influences 

export of heat and mass, including constituents of interest. 

The temperature model developed within this thesis provides a simplified 

representation of the observed stratification and mixing patterns under dry, low flow 

conditions within a small pool in the stream. To better understand potential impacts on 
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these systems due to climate change, various scenarios were simulated using the newly 

developed temperature model. Through these scenarios, we found that potential increases 

in thaw depths due to climate change can shift stratification and mixing patterns and, 

therefore, influence nutrient export dynamics. These advances are important due to the 

implications on downstream processes including impacts on ecology, fisheries, local 

subsistence residents, and nutrient export to the Arctic Ocean. 

In addition, the observations made within this thesis based on both the field data 

and model results provide foundational information that will guide future hydrologic 

research in beaded Arctic watersheds. Further investigations should include: interactions 

between the hillslope, riparian, and instream zones; hillslope and riparian zone 

connectivity; exchange between the riparian zone and stream; and pool storage due to 

stratification. 
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CHAPTER 6 

RECOMMENDATIONS FOR FUTURE RESEARCH 

1) Attenuation: Higher resolution of attenuation measurements. The data in this 

study did not support accurate estimation of attenuation coefficients for each pool 

layer. Ideally, these values would have been estimated based on measurements 

taken at a fine vertical resolution while ensuring minimal mixing of the layers, 

thereby reducing the number of and uncertainty in the calibration parameters. 

2) Thaw Depth: Higher density, both spatially and temporally, of thaw depth 

measurements under the pool. This study used a single measurement to represent 

the active layer over time and space. However, it was found that thaw depth is an 

important and sensitive model parameter warranting more attention during data 

collection. Additionally, collecting a time series of thaw depths would allow for 

inclusion of a more accurate representation of dynamic processes involving the 

thaw depth active layer interface in model formulation. Collection of this 

additional data would involve leaving temp sensors in place throughout a full 

freeze thaw cycle. 

3) Flow: Broader range of flow conditions. Develop a stage discharge relationship in 

order to obtain flow time series data using data from a pressure transmitter along 

with the weirs. These data would allow for simulation of higher flow periods, 

thereby allowing precipitation and transition periods to be incorporate into the 

model formulation. 
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4) Water and Side Track Flows: Collect flow data for lateral inflow sources. Use 

weirs or other methods in the water and side tracks in order collect flow volumes. 

This would allow for seepage and/or other lateral inflows to be accounted for in 

the model formulation. 
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DERIVATION OF MODEL EQUATIONS 

Heat Balance Equations 

Pool Layer 1:  
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Dividing through by ρ, Cp, and V, 
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Canceling terms, 

Pool Layer 1:  
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where T = temperature ( ̊C), Q = volumetric flow rate (m
3
 day

-1
), V = volume of the layer 

(m
3
), ρ = density of the water (g m

-3
), Cp = heat capacity of the water (cal g

-1
  ̊C

-1
), As = 

surface area of each layer of the pool (m
2
), ν = the vertical heat transfer coefficient (m 

day
-1

), z = depth (m), K = thermal conductivity of the sediment (cal m
-1

  ̊C
-1

 day
-1

),  Jatm = 

total surface flux (cal m
-2

 day
-1

), and Jsn,i = shortwave solar radiation (cal m
-2

 day
-1

) of 

each layer due to attenuation. The subscripts 1, 2, 3, in, out, s, atm, sed, and ave specify 

the top, middle and bottom layer of the pool or sediment, inflow, outflow, surface, 

atmospheric, sediment, and average, respectively. 

 

Density of Water 

As taken from Chapra and Martin (2004): 

The density of water is related to temperature and salinity by (Millero and Poisson 1981): 

22/3 CSBSASo +++= ρρ  

where ρ = density [g L
−1

], S = salinity (ppt), and 
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in which T = temperature (
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The salinity is related to chloride concentration by (Thomann and Mueller 1987), 

ClS 31080655.1 −×=  
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where Cl = chloride concentration. The chloride concentration is related to conductivity 

by 
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