5 research outputs found

    Dynamic hardware-acceleration of VNFs in NFV environments

    Get PDF
    In this paper, we describe a scheme for dynamically provisioning hardware-accelerator resources to virtual network functions (VNF) in an NFV environment. The scheme involves collaboration between various NFV components like service-specific manager (SSM) and element-management-systems (EMSs) for the management of accelerator resources. Accelerator resources are dynamically allocated to VNFs based on their resource usage information. We present the performance comparison of non-accelerated and accelerated SSH-client VNFs. We also demonstrate switching of accelerator resources between the concurrently running SSH-tunnels which is triggered by a change in the nature of the data traffic flowing through SSH-tunnels

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Network Function Virtualization: state-of-the-art and research challenges

    Get PDF
    Network Function Virtualization (NFV) has drawn significant attention from both industry and academia as an important shift in telecommunication service provisioning. By decoupling Network Functions (NFs) from the physical devices on which they run, NFV has the potential to lead to significant reductions in Operating Expenses (OPEX) and Capital Expenses (CAPEX) and facilitate the deployment of new services with increased agility and faster time-to-value. The NFV paradigm is still in its infancy and there is a large spectrum of opportunities for the research community to develop new architectures, systems and applications, and to evaluate alternatives and trade-offs in developing technologies for its successful deployment. In this paper, after discussing NFV and its relationship with complementary fields of Software Defined Networking (SDN) and cloud computing, we survey the state-of-the-art in NFV, and identify promising research directions in this area. We also overview key NFV projects, standardization efforts, early implementations, use cases and commercial products.Peer ReviewedPostprint (author's final draft
    corecore