125,121 research outputs found

    A Deep Architecture for Semantic Parsing

    Full text link
    Many successful approaches to semantic parsing build on top of the syntactic analysis of text, and make use of distributional representations or statistical models to match parses to ontology-specific queries. This paper presents a novel deep learning architecture which provides a semantic parsing system through the union of two neural models of language semantics. It allows for the generation of ontology-specific queries from natural language statements and questions without the need for parsing, which makes it especially suitable to grammatically malformed or syntactically atypical text, such as tweets, as well as permitting the development of semantic parsers for resource-poor languages.Comment: In Proceedings of the Semantic Parsing Workshop at ACL 2014 (forthcoming

    PARNT: A statistic based approach to extract non-taxonomic relationships of ontologies from text

    Get PDF
    Learning Non-Taxonomic Relationships is a subfield of Ontology learning that aims at automating the extraction of these relationships from text. This article proposes PARNT, a novel approach that supports ontology engineers in extracting these elements from corpora of plain English. PARNT is parametrized, extensible and uses original solutions that help to achieve better results when compared to other techniques for extracting non-taxonomic relationships from ontology concepts and English text. To evaluate the PARNT effectiveness, a comparative experiment with another state of the art technique was conducted.This work is supported by CNPq and CAPES, research funding agencies of the Brazilian government

    Automatically attaching web pages to an ontology

    Get PDF
    This paper describes a proposed system for automatically attaching material from the world wide web to concepts in an ontology. The motivation for this research stems from the Diogene project, which requires the project's own databases of learning objects to be augmented with additional resources from the web. Two main approaches to this problem are being taken: one using ontology mapping, and another based on the conventional text search facilities of the web, covered in this paper. By generating queries based on the concepts in the ontology, the aim is to retrieve material from the web, and then filter it to ensure its proper correspondence with a concept. The Diogene system will be briefly outlined, before the query-generation system is described. A small pilot experiment, designed to provide some initial results and insight into the problem, is then presented

    Word Sense Disambiguation for Ontology Learning

    Get PDF
    Ontology learning aims to automatically extract ontological concepts and relationships from related text repositories and is expected to be more efficient and scalable than manual ontology development. One of the challenging issues associated with ontology learning is word sense disambiguation (WSD). Most WSD research employs resources such as WordNet, text corpora, or a hybrid approach. Motivated by the large volume and richness of user-generated content in social media, this research explores the role of social media in ontology learning. Specifically, our approach exploits social media as a dynamic context rich data source for WSD. This paper presents a method and preliminary evidence for the efficacy of our proposed method for WSD. The research is in progress toward conducting a formal evaluation of the social media based method for WSD, and plans to incorporate the WSD routine into an ontology learning system in the future

    The devices, experimental scaffolds, and biomaterials ontology (DEB): a tool for mapping, annotation, and analysis of biomaterials' data

    Get PDF
    The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.Preprin
    • …
    corecore