13 research outputs found

    Improving automation standards via semantic modelling: Application to ISA88

    Get PDF
    Standardization is essential for automation. Extensibility, scalability, and reusability are important features for automation software that rely in the efficient modelling of the addressed systems. The work presented here is from the ongoing development of a methodology for semi-automatic ontology construction methodology from technical documents. The main aim of this work is to systematically check the consistency of technical documents and support the improvement of technical document consistency. The formalization of conceptual models and the subsequent writing of technical standards are simultaneously analyzed, and guidelines proposed for application to future technical standards. Three paradigms are discussed for the development of domain ontologies from technical documents, starting from the current state of the art, continuing with the intermediate method presented and used in this paper, and ending with the suggested paradigm for the future. The ISA88 Standard is taken as a representative case study. Linguistic techniques from the semi-automatic ontology construction methodology is applied to the ISA88 Standard and different modelling and standardization aspects that are worth sharing with the automation community is addressed. This study discusses different paradigms for developing and sharing conceptual models for the subsequent development of automation software, along with presenting the systematic consistency checking methodPeer ReviewedPostprint (author's final draft

    INGENIERĂŤA ONTOLĂ“GICA APLICADA EN EL DISEĂ‘O DE UN SISTEMA DE ONTOLOGĂŤAS PARA LA GESTIĂ“N DE HORARIOS

    Get PDF
    ResumenEn este artículo se describe el proceso de ingeniería ontológica aplicado en el diseño y construcción de un sistema de ontologías para la gestión de horarios. Se presenta la metodología detallada que se implementó, la cual consistió de las siguientes etapas: especificación de las preguntas de competencia, diseño modular y basado en dominios del sistema de ontologías, diseño y evaluación de cada ontología individualmente, integración de las ontologías y evaluación general del sistema de ontologías mediante preguntas de competencia. Como resultado se obtuvo un sistema de ontologías que cumple con los principios de diseño de claridad, coherencia, modularidad, y usabilidad. Finalmente se evaluó la competencia de la ontología ejecutando las preguntas de competencia a través de la definición de reglas de inferencia lógica.Palabras Claves: Ingeniería ontológica, principios de diseño de ontologías, sistema de ontologías. ONTOLOGICAL ENGINEERING APPLIED ON THE DESIGN OF AN ONTOLOGY SYSTEM FOR THE MANAGEMENT OF SCHEDULESAbstractIn this paper we describe the ontological engineering process applied in the design and construction of an ontology system for academic schedule management. We present the detailed methodology that was implemented, which consisted of the following stages: specification of competency questions, modular and domain-oriented design of the ontology system, design and evaluation of each ontology, integration of ontologies and general evaluation of the ontology system. As a result, a system of ontologies was obtained that complies with the design principles of clarity, coherence, modularity, etc. Finally, the competence of the ontology was evaluated by executing the competency questions through the definition of inference and query rules.Keywords: Ontology engineering, ontology design principles, ontology system

    Management of «Systematic Innovation»: A kind of quest for the Holy Grail!

    Get PDF
    In this paper, authors propose a contribution for improving the open innovation processes. It shows the necessity to get an efficient methodology for open innovation in order to build a computer aided tool for inventive design in Process Systems Engineering (PSE). The proposed methodology will be evocated to be fully used in the context of the “revolutionary” concepts around the so-called factory for the future, also called integrated digital factory, innovative factory… As a result the main contribution of this paper is to propose a software prototype for an Open Computer Aided Innovation 2.0. By definition this open innovation relies on collaboration. This collaboration should enable a community, with a very broad spectrum of skills, to share data, information, knowledge and ideas. As a consequence, a first sub objective is to create a methodological framework that takes advantages of collaboration and collective intelligence (with its capacity to join intelligence and knowledge). Furthermore, the raise of the digital company and more particularly the breakthroughs in information technologies is a powerful enabler to extend and improve the potential of collective intelligence. The second sub objective is to propose a problem resolution process to impel creativity of expert but also to develop, validate and select innovative solutions. After dealing with the importance of Process Innovation and Problem solving investigation in PSE, the proposed approach originally based on an extension of the TRIZ theory (Russian acronym for Theory of Inventive Problem Solving), has been improved by using approach such as case-based reasoning, in order to tackle and revisit problems encountered in the PSE. A case study on biomass is used to illustrate the capabilities of the methodology and the tool

    From conceptual design to process design optimization: a review on flowsheet synthesis

    Get PDF
    International audienceThis paper presents the authors’ perspectives on some of the open questions and opportunities in Process Systems Engineering (PSE) focusing on process synthesis. A general overview of process synthesis is given, and the difference between Conceptual Design (CD) and Process Design (PD) is presented using an original ternary diagram. Then, a bibliometric analysis is performed to place major research team activities in the latter. An analysis of ongoing work is conducted and some perspectives are provided based on the analysis. This analysis includes symbolic knowledge representation concepts and inference techniques, i.e., ontology, that is believed to become useful in the future. Future research challenges that process synthesis will have to face, such as biomass transformation, shale production, response to spaceflight demand, modular plant design, and intermittent production of energy, are also discussed

    MODDALS Methodology for Designing Layered Ontology Structures

    Get PDF
    Global ontologies include common vocabularies to provide interoperability among different applications. These ontologies require a balance of reusability-usability to minimise the ontology reuse effort in different applications. To achieve such a balance, reusable and usable ontology design methodologies provide guidelines to design and develop layered ontology networks. Layered ontology networks classify into different abstraction layers the domain knowledge relevant to many applications (common domain knowledge) and the domain knowledge relevant only to certain application types (variant domain knowledge). This knowledge classification is performed from scratch by domain experts and ontology engineers. This process is a heavy workload, making it difficult to design the layered structures of reusable and usable global ontologies. Considering how common and variant software features are classified when designing Software Product Lines (SPLs), we argue that SPL engineering techniques can facilitate the domain knowledge classification taking as reference existing ontologies. This paper presents a methodology that provides guidelines to design the layered structure of reusable and usable ontology networks called MODDALS. In contrast to previous methods, MODDALS applies SPL engineering techniques to systematically (1) identify the ontology common and variant domain knowledge and (2) classify it into different abstraction layers taking as reference existing ontologies. This approach complements domain experts’ and ontology engineers’ expertise, preventing them from classifying the domain knowledge from scratch facilitating the design of the layered ontology structure. MODDALS methodology is evaluated in the design of the layered structure of a reusable and usable global ontology for the energy domain. The results show that MODDALS enables to classify the domain knowledge taking as reference existing ontologies

    Ontology-Based Data Integration in Multi-Disciplinary Engineering Environments: A Review

    Get PDF
    Today's industrial production plants are complex mechatronic systems. In the course of the production plant lifecycle, engineers from a variety of disciplines (e.g., mechanics, electronics, automation) need to collaborate in multi-disciplinary settings that are characterized by heterogeneity in terminology, methods, and tools. This collaboration yields a variety of engineering artifacts that need to be linked and integrated, which on the technical level is reflected in the need to integrate heterogeneous data. Semantic Web technologies, in particular ontologybased data integration (OBDI), are promising to tackle this challenge that has attracted strong interest from the engineering research community. This interest has resulted in a growing body of literature that is dispersed across the Semantic Web and Automation System Engineering research communities and has not been systematically reviewed so far. We address this gap with a survey reflecting on OBDI applications in the context of Multi-Disciplinary Engineering Environment (MDEE). To this end, we analyze and compare 23 OBDI applications from both the Semantic Web and the Automation System Engineering research communities. Based on this analysis, we (i) categorize OBDI variants used in MDEE, (ii) identify key problem context characteristics, (iii) compare strengths and limitations of OBDI variants as a function of problem context, and (iv) provide recommendation guidelines for the selection of OBDI variants and technologies for OBDI in MDEE

    Systematic Methods and Tools for Computer Aided Modelling

    Get PDF

    Computer-aided modeling for efficient and innovative product-process engineering

    Get PDF
    Model baserede computer understøttet produkt process engineering har opnået øget betydning i forskelligste industrielle brancher som for eksampel farmaceutisk produktion, petrokemi, finkemikalier, polymerer, bioteknologi, fødevarer, energi og vand. Denne trend er forventet at fortsætte på grund af substantielle fordele, hvilke computer understøttede metoder medfører. Den primære forudsætning af computer understøttet produkt process engineering erselvfølgelig den tilgængelighed af modeller af forskellige typer, former og anvendelser. Udviklingen af den påkrævet modellen for de undersøgte systemer er normalt en tidskrævende udfordring og derfor mest også dyrt. Den involverer forskelligste trin, fagekspert viden og dygtighed og forskellige modellerings værktøjer. Formålet af dette projekt er at systematisere den model udviklings proces og anvendelse og dermed øge effektiviteten af modeller såvel somkvaliteten. Den væsentlige bidrag af denne PhD afhandling er en generisk metodologi for proces model udviklingen og anvendelse i kombination med grundige algoritmiske arbejdes diagrammer for de forskellige involverede modeller opgaver og udviklingen af computer understøttede modeller rammer hvilke er strukturbaseret på den generiske metodologi, delvis automatiseret i de forskellige arbejdstrin og kombinerer alle påkrævet værktøjer, understøttelseog vejledning for de forskellige arbejdstrin. Understøttede modelleringsopgaver er etableringen af modeller mål, indsamling af de nødvendige informationer, model formulering inklusive numeriske analyser, etablering af løsningsstrategier og forbinding med den passende løsningsmodul, model identificering og sondering såvel som model anvendelse for simulation og optimering. Den computer understøttede modeller ramme blev implementeret i en brugervenlig software. En række forskellige demonstrationseksempler fra forskellige områder i kemisk ogbiokemiske engineering blev løst for udvikling og validering af den generiske modellerings metodologi og den computer understøttet modeller ramme anvendt på den udviklet software værktøj.Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms andapplication modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost-intensive task involving numerous steps, expert skills and different modelling tools. The objective of this project is to systematize the process of model development and application thereby increasing the efficiency of the modeller as well as model quality.The main contributions of this thesis are a generic methodology for the process of model development and application, combining in-depth algorithmic work-flows for the different modelling tasks involved and the development of a computer-aided modelling framework. This framework is structured, is based on the generic modelling methodology, partially automates the involved work-flows by integrating the required tools and, supports and guides the userthrough the different work-flow steps. Supported modelling tasks are the establishment of the modelling objective, the collection of the required system information, model construction including numerical analysis, derivation of solution strategy and connection to appropriate solvers, model identification/ discrimination as well as model application for simulation and optimization. The computer-aided modelling framework has been implemented into an userfriendlysoftware.A variety of case studies from different areas in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool
    corecore