9,521 research outputs found

    From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments

    Full text link
    We consider a non-stochastic online learning approach to price financial options by modeling the market dynamic as a repeated game between the nature (adversary) and the investor. We demonstrate that such framework yields analogous structure as the Black-Scholes model, the widely popular option pricing model in stochastic finance, for both European and American options with convex payoffs. In the case of non-convex options, we construct approximate pricing algorithms, and demonstrate that their efficiency can be analyzed through the introduction of an artificial probability measure, in parallel to the so-called risk-neutral measure in the finance literature, even though our framework is completely adversarial. Continuous-time convergence results and extensions to incorporate price jumps are also presented

    Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction

    Full text link
    In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.Comment: 8 pages, SIGKDD 202

    Optimal Algorithms for k -Search with Application inOption Pricing

    Get PDF
    In the k-search problem, a player is searching for the k highest (respectively, lowest) prices in a sequence, which is revealed to her sequentially. At each quotation, the player has to decide immediately whether to accept the price or not. Using the competitive ratio as a performance measure, we give optimal deterministic and randomized algorithms for both the maximization and minimization problems, and discover that the problems behave substantially different in the worst-case. As an application of our results, we use these algorithms to price "lookback options”, a particular class of financial derivatives. We derive bounds for the price of these securities under a no-arbitrage assumption, and compare this to classical option pricin

    Incorporating statistical model error into the calculation of acceptability prices of contingent claims

    Get PDF
    The determination of acceptability prices of contingent claims requires the choice of a stochastic model for the underlying asset price dynamics. Given this model, optimal bid and ask prices can be found by stochastic optimization. However, the model for the underlying asset price process is typically based on data and found by a statistical estimation procedure. We define a confidence set of possible estimated models by a nonparametric neighborhood of a baseline model. This neighborhood serves as ambiguity set for a multi-stage stochastic optimization problem under model uncertainty. We obtain distributionally robust solutions of the acceptability pricing problem and derive the dual problem formulation. Moreover, we prove a general large deviations result for the nested distance, which allows to relate the bid and ask prices under model ambiguity to the quality of the observed data.Comment: 27 pages, 2 figure

    Option Pricing: The empirical tests of the Black-Scholes pricing formula and the feed-forward networks

    Get PDF
    In this article we evaluate the pricing performance of the rather simple but revolutionary Black-Scholes model and one of the more complex techniques (neural networks) on the European-style S&P Index call and put options over the period of 1.6.2006 till 8.6.2007. Our results on call options show that generally Black-Scholes model performs better than simple generalized feed-forward networks. On the other hand neural networks performance is improving as the option goes deep in the money and as days to expiration increase, compared to the worsening performance of the BS models. Neural networks seem to correct for the well-known Black-Scholes model moneyness and maturity biases.option pricing, neural networks

    Evolutionary rule-based system for IPO underpricing prediction

    Get PDF
    Genetic And Evolutionary Computation Conference. Washington DC, USA, 25-29 June 2005Academic literature has documented for a long time the existence of important price gains in the first trading day of initial public offerings (IPOs).Most of the empirical analysis that has been carried out to date to explain underpricing through the offering structure is based on multiple linear regression. The alternative that we suggest is a rule-based system defined by a genetic algorithm using a Michigan approach. The system offers significant advantages in two areas, 1) a higher predictive performance, and 2) robustness to outlier patterns. The importance of the latter should be emphasized since the non-trivial task of selecting the patterns to be excluded from the training sample severely affects the results.We compare the predictions provided by the algorithm to those obtained from linear models frequently used in the IPO literature. The predictions are based on seven classic variables. The results suggest that there is a clear correlation between the selected variables and the initial return, therefore making possible to predict, to a certain extent, the closing price.This article has been financed by the Spanish founded research MCyT project TRACER, Ref: TIC2002-04498-C05-04M
    corecore