17 research outputs found

    Measure of synonymous codon usage diversity among genes in bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many bacteria, intragenomic diversity in synonymous codon usage among genes has been reported. However, no quantitative attempt has been made to compare the diversity levels among different genomes. Here, we introduce a mean dissimilarity-based index (<it>D</it>mean) for quantifying the level of diversity in synonymous codon usage among all genes within a genome.</p> <p>Results</p> <p>The application of <it>D</it>mean to 268 bacterial genomes shows that in bacteria with extremely biased genomic G+C compositions there is little diversity in synonymous codon usage among genes. Furthermore, our findings contradict previous reports. For example, a low level of diversity in codon usage among genes has been reported for <it>Helicobacter pylori</it>, but based on <it>D</it>mean, the diversity level of this species is higher than those of more than half of bacteria tested here. The discrepancies between our findings and previous reports are probably due to differences in the methods used for measuring codon usage diversity.</p> <p>Conclusion</p> <p>We recommend that <it>D</it>mean be used to measure the diversity level of codon usage among genes. This measure can be applied to other compositional features such as amino acid usage and dinucleotide relative abundance as a genomic signature.</p

    Analysis and Prediction of Translation Rate Based on Sequence and Functional Features of the mRNA

    Get PDF
    Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1) integrating various sequence-derived and functional features, (2) applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3) being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5′UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale

    Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development

    Get PDF
    Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000 P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design

    Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Get PDF
    Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution

    CpG-creating mutations are costly in many human viruses.

    Get PDF
    Mutations can occur throughout the virus genome and may be beneficial, neutral or deleterious. We are interested in mutations that yield a C next to a G, producing CpG sites. CpG sites are rare in eukaryotic and viral genomes. For the eukaryotes, it is thought that CpG sites are rare because they are prone to mutation when methylated. In viruses, we know less about why CpG sites are rare. A previous study in HIV suggested that CpG-creating transition mutations are more costly than similar non-CpG-creating mutations. To determine if this is the case in other viruses, we analyzed the allele frequencies of CpG-creating and non-CpG-creating mutations across various strains, subtypes, and genes of viruses using existing data obtained from Genbank, HIV Databases, and Virus Pathogen Resource. Our results suggest that CpG sites are indeed costly for most viruses. By understanding the cost of CpG sites, we can obtain further insights into the evolution and adaptation of viruses

    Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite a large agreement between ribosomal RNA and concatenated protein phylogenies, the phylogenetic tree of the bacterial domain remains uncertain in its deepest nodes. For instance, the position of the hyperthermophilic Aquificales is debated, as their commonly observed position close to Thermotogales may proceed from horizontal gene transfers, long branch attraction or compositional biases, and may not represent vertical descent. Indeed, another view, based on the analysis of rare genomic changes, places Aquificales close to epsilon-Proteobacteria.</p> <p>Results</p> <p>To get a whole genome view of <it>Aquifex </it>relationships, all trees containing sequences from <it>Aquifex </it>in the HOGENOM database were surveyed. This study revealed that <it>Aquifex </it>is most often found as a neighbour to Thermotogales. Moreover, informational genes, which appeared to be less often transferred to the <it>Aquifex </it>lineage than non-informational genes, most often placed Aquificales close to Thermotogales. To ensure these results did not come from long branch attraction or compositional artefacts, a subset of carefully chosen proteins from a wide range of bacterial species was selected for further scrutiny. Among these genes, two phylogenetic hypotheses were found to be significantly more likely than the others: the most likely hypothesis placed Aquificales as a neighbour to Thermotogales, and the second one with epsilon-Proteobacteria. We characterized the genes that supported each of these two hypotheses, and found that differences in rates of evolution or in amino-acid compositions could not explain the presence of two incongruent phylogenetic signals in the alignment. Instead, evidence for a large Horizontal Gene Transfer between Aquificales and epsilon-Proteobacteria was found.</p> <p>Conclusion</p> <p>Methods based on concatenated informational proteins and methods based on character cladistics led to different conclusions regarding the position of Aquificales because this lineage has undergone many horizontal gene transfers. However, if a tree of vertical descent can be reconstructed for Bacteria, our results suggest Aquificales should be placed close to Thermotogales.</p

    Evolutionary trajectories of new duplicated and putative de novo genes

    Get PDF
    The formation of new genes during evolution is an important motor of functional innovation, but the rate at which new genes originate and the likelihood that they persist over longer evolutionary periods are still poorly understood questions. Two important mechanisms by which new genes arise are gene duplication and de novo formation from a previously noncoding sequence. Does the mechanism of formation influence the evolutionary trajectories of the genes? Proteins arisen by gene duplication retain the sequence and structural properties of the parental protein, and thus they may be relatively stable. Instead, de novo originated proteins are often species specific and thought to be more evolutionary labile. Despite these differences, here we show that both types of genes share a number of similarities, including low sequence constraints in their initial evolutionary phases, high turnover rates at the species level, and comparable persistence rates in deeper branchers, in both yeast and flies. In addition, we show that putative de novo proteins have an excess of substitutions between charged amino acids compared with the neutral expectation, which is reflected in the rapid loss of their initial highly basic character. The study supports high evolutionary dynamics of different kinds of new genes at the species level, in sharp contrast with the stability observed at later stages.We acknowledge funding from Ministerio de Ciencia e Innovación Agencia Estatal de Investigación grant PGC2018-094091-B-I00 (cofunded by Fondo Europeo de Desarrollo Regional), as well as grants PID2021-122726NB-I00 and PID2021-122830OB-C43 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF: A way of making Europe”, by the “European Union”. We also acknowledge funding from Generalitat de Catalunya, grant 2021SGR00042. The work was also funded by the European Union (ERC, NovoGenePop, project number 101052538).Peer ReviewedPostprint (published version
    corecore