2,468 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    DRLCap: Runtime GPU Frequency Capping with Deep Reinforcement Learning

    Get PDF
    Power and energy consumption is the limiting factor of modern computing systems. As the GPU becomes a mainstream computing device, power management for GPUs becomes increasingly important. Current works focus on GPU kernel-level power management, with challenges in portability due to architecture-specific considerations. We present DRLCap , a general runtime power management framework intended to support power management across various GPU architectures. It periodically monitors system-level information to dynamically detect program phase changes and model the workload and GPU system behavior. This elimination from kernel-specific constraints enhances adaptability and responsiveness. The framework leverages dynamic GPU frequency capping, which is the most widely used power knob, to control the power consumption. DRLCap employs deep reinforcement learning (DRL) to adapt to the changing of program phases by automatically adjusting its power policy through online learning, aiming to reduce the GPU power consumption without significantly compromising the application performance. We evaluate DRLCap on three NVIDIA and one AMD GPU architectures. Experimental results show that DRLCap improves prior GPU power optimization strategies by a large margin. On average, it reduces the GPU energy consumption by 22% with less than 3% performance slowdown on NVIDIA GPUs. This translates to a 20% improvement in the energy efficiency measured by the energy-delay product (EDP) over the NVIDIA default GPU power management strategy. For the AMD GPU architecture, DRLCap saves energy consumption by 10%, on average, with a 4% percentage loss, and improves energy efficiency by 8%

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    A multi-microcontroller-based hardware for deploying Tiny machine learning model

    Get PDF
    The tiny machine learning (TinyML) has been considered to applied on the edge devices where the resource-constrained micro-controller units (MCUs) were used. Finding a good platform to deploy the TinyML effectively is very crucial. The paper aims to propose a multiple micro-controller hardware platform for productively running the TinyML model. The proposed hardware consists of two dual-core MCUs. The first MCU is utilized for acquiring and processing input data, while the second is responsible for executing the trained TinyML network. Two MCUs communicate to each other using the universal asynchronous receiver-transmitter (UART) protocol. The multi-tasking programming technique is mainly applied on the first MCU to optimize the pre-processing new data. A three-phase motors faults classification TinyML model was deployed on the proposed system to evaluate the effectiveness. The experimental results prove that our proposed hardware platform was improved 34.8% the total inference time including pre-processing data of the proposed TinyML model in comparing with single micro-controller hardware platform

    Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the Edge

    Full text link
    3D object detection plays a pivotal role in many applications, most notably autonomous driving and robotics. These applications are commonly deployed on edge devices to promptly interact with the environment, and often require near real-time response. With limited computation power, it is challenging to execute 3D detection on the edge using highly complex neural networks. Common approaches such as offloading to the cloud induce significant latency overheads due to the large amount of point cloud data during transmission. To resolve the tension between wimpy edge devices and compute-intensive inference workloads, we explore the possibility of empowering fast 2D detection to extrapolate 3D bounding boxes. To this end, we present Moby, a novel system that demonstrates the feasibility and potential of our approach. We design a transformation pipeline for Moby that generates 3D bounding boxes efficiently and accurately based on 2D detection results without running 3D detectors. Further, we devise a frame offloading scheduler that decides when to launch the 3D detector judiciously in the cloud to avoid the errors from accumulating. Extensive evaluations on NVIDIA Jetson TX2 with real-world autonomous driving datasets demonstrate that Moby offers up to 91.9% latency improvement with modest accuracy loss over state of the art.Comment: Accepted to ACM International Conference on Multimedia (MM) 202
    corecore