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Abstract

Cloud computing offers the possibility for Cyber-Physical
Systems (CPS) to offload computation and utilise large stored
data sets in order to increase the overall system utility.
However, for cloud platforms and applications to be effective
for CPS, they need to exhibit real-time behaviour so that
some level of performance can be guaranteed to the CPS.
This paper considers the infrastructure developed by the EU
JUNIPER project for enabling real-time big data systems to
be built so that appropriate guarantees can be given to the
CPS components. The technologies developed include a real-
time Java programming approach, hardware acceleration to
provide performance, and operating system resource manage-
ment (time and disk) based upon resource reservation in order
to enhance timeliness.

I. INTRODUCTION

A key challenge for cyber-physical systems (CPS) is the

successful exploitation of the computing and storage facilities

in the cloud, whilst still meeting resource constraints, such

as eg. time, power, space or cost. Using the cloud, CPS can

offload computation, store and query large quantities of data,

and share resources and data with other related CPS. However,

whilst CPS are generally designed and implemented to meet

stringent timing and resource constraints, cloud based systems

are in general built without such timing and resource con-

straints. Also, communication between CPS and the supporting

cloud based applications may involve networks that are shared,

and potentially public (ie. internet), making communication

latencies difficult to bound.

Whilst cloud facilities can be exploited as currently im-

plemented (with no meaningful guarantees regarding perfor-

mance), far greater overall system utility can be achieved

if the cloud system is able to provide levels of guaranteed

performance to the CPS. This could enable the CPS to utilise

the cloud as a fundamental part of the system, rather than

merely an unreliable occasional additional service.

This paper discusses the key challenges posed by the

integration of CPS and cloud systems, in the context of Real-
Time Big Data (RTBD) systems [9]. In [11], [17] the the main

technologies developed within the EU Framework 7 JUNIPER

project [4] are discussed, showing how real-time big data

systems can be built in a general purpose business computing

context. In this paper, we examine how the JUNIPER approach

can be utilised to enable real-time behaviour for CPS utilising

cloud systems. We show how JUNIPER provides RTBD cloud

infrastructure built from real-time technologies, using real-

time principles, so that appropriate guarantees can be given

to the services implemented on the cloud, and hence to CPS

using the cloud services. The overall approach includes:

• a real-time scalable Java based platform (with supporting

development methodology);

• acceleration of key components using FPGA hardware;

• support within commodity cloud OSs (ie. Linux) for real-

time use of (parallel) mass-storage;

• cloud scheduling amenable to predictability.

The JUNIPER cloud infrastructure can be configured to build

and support a range of high-performance cloud computing

approaches and paradigms, from map-reduce to stream [13],

[2], [6]. It enables real-time constraints to be met – noting

that shared communications between cloud and the CPS, and

the potentially shared nature of cloud platforms themselves,

dictate soft real-time guarantees.

The remainder of this paper is arranged as follows. In

section II further background on RTBD is given. Section III

provides an overview of the JUNIPER project, with sec-

tions IV, V and VI giving details of the programming model,

program acceleration and OS respectively. Conclusions are

offered in section VII.

II. BIG DATA AND REAL-TIME BIG DATA

Big Data is a widely used term to describe the rapid growth

of the availability of data [18]. Essentially the growth of data

can be thought of in three main ways [19]: volume, velocity

and variety. However in many systems data is growing more

rapidly than the ability of applications and systems to process,

analyse and store that data [21]. This is more readily apparent

when big data applications that process live streaming data are

considered, where data is to be analysed sufficiently fast so

that incoming data is not lost. Also techniques for analysing

big data are not necessarily based upon traditional database

techniques as these do not necessarily scale to the table

sizes involved, or can necessarily cope with unstructured data.

Alternatively data-analytic approaches such as map-reduce,

which are amenable to massive parallelisation [6] are utilised.

A. Real-Time Big Data

Applications utilising “Big Data” resources increasingly

include requirements for “real-time” behaviour – ie. Real-Time
Big Data (RTBD) applications [9]. Such real-time require-

ments are, in general, business-critical – eg. querying past

historical system data to aid current decision making.

Also increasing is the use of RTBD applications in con-

junction with CPS, eg. automotive, where cars (ie. users)

interact with remote cloud computing resources for data, and

to optimise performance (eg. traffic data, routes), or to provide
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additional advisory services [3]. Some level of guaranteed

performance is required from the RTBD application in the

cloud for the CPS to be able to utilise the cloud effectively.

Whilst hard (ie. safety-critical) guarantees are not appropriate

for RTBD applications in the cloud, best-effort and soft real-

time approaches are appropriate. These enable a response to

be provided within a specific timeframe. Whilst the CPS may

not receive optimal information, given the amount of data that

may have to be searched, an appropriate (best-effort) response

can be made.

There are three elements in a CPS utilising the cloud:

1) CPS – one or more CPS that can function autonomously,

but can utilise RTBD applications in the cloud to provide

value-added service;

2) Cloud-based RTBD application – which can accept

streaming data inputs, process and store data, respond

to CPS data queries;

3) Communications between CPS and RTBD application –

essentially shared bandwidth, potentially public.

Note that whilst the CPS can function without the cloud, and

meet required timing guarantees using its own resources, over-

all system utility can be increased by using the RTBD applica-

tion in the cloud, where deadlines involved are essentially soft

real-time. Private communications networks (or Service Level

Agreements for network bandwidth) and private (unshared)

cloud resources can significantly improve timeliness – whilst

this is a crucial issue, it lies outside the scope of the paper.

B. Challenges

From a real-time CPS perspective, key challenges of many

RTBD applications include:

• Programming – traditional approaches for programming

large parallel or cloud platforms are based upon standard

programming languages that are not amenable to real-

time, and that abstract (or virtualise) the underlying plat-

form. The former problem can be addressed by utilising

real-time programming languages, eg. Real-time Specifi-

cation for Java [16]. The latter problem is also important,

as it prevents applications from exploiting features of the

platform (eg. parallelism, accelerators) that could increase

performance. Thus sufficient visibility of the platform

is required by the programmer in order to exploit the

platform without losing the power of abstraction.

• Timing guarantees – a number of issues arise in RTBD

cloud applications that can compromise the ability to

guarantee timing behaviour, including: cloud platforms

offer a dynamic platform to an application, where the

available number of CPUs and system performance avail-

able to the application can vary over time; storage can

vary over time; processing and storing high bandwidth

streaming I/O in the context of commodity operating

systems (eg. Linux); accessing large file systems.

• Scalability – exploitation of the parallel cloud platform

such that if more resources are available (ie. more CPUs)

the RTDB application can scale to use these resources

without compromising any timing guarantees given. This

also has impact on the programming approach.

We note that current approaches to building RTBD applica-

tions do not adequately support real-time performance, or even

provide any level of guaranteed performance. Often, real-time

performance is sought by increasing the overall performance

of the platform, hence increasing the raw speed of response to

any request. However, such an approach is unlikely to be able

to offer real-time guarantees regarding the speed of response,

and is often expensive in terms of cost and power, as more

and more resources are included in the platform in the hope

of it being sufficiently fast to offer the illusion of real-time.

III. JUNIPER OVERVIEW

The JUNIPER project [4] constructs cloud infrastructure

from real-time technologies, using real-time principles, so

that appropriate guarantees can then be given regarding the

performance of applications running in the cloud. In turn, this

enables CPS using that cloud infrastructure to then deduce

overall timing behaviour when using cloud services (noting

communications issues outlined in section II).

The intuition behind the JUNIPER approach is the observa-

tion that traditional real-time systems approaches enable real-

time guarantees to be given to applications executing upon a

platform with limited resources – ie. the amount of resource

(eg. processor, I/O) that can be allocated to an application

processes is known a priori; offline analysis allows guaranteed

levels of service to be established. JUNIPER applies real-time

principles to RTBD systems, so that levels of performance can

be guaranteed within a cloud context. We note that JUNIPER

is not aiming to provide hard guarantees, concentrating upon

soft or best-effort approaches instead – largely due to the

nature of RTBD cloud platforms (as outlined in section II)

where resources in the cloud are essentially shared with other

dynamic workloads, the commodity nature of the platforms

themselves, and the unbounded nature of the algorithms and

applications run in the cloud on large data-sets. Clearly, if

platforms are constrained (eg. closed RTBD systems), then

tighter bounds on timing performance can be obtained.

When constructing an RTBD cloud system using real-time

technologies developers can know that real-time constraints

will be met prior to the system running. This is in contrast to

conventional cloud system design, where the increase of per-

formance by adding processing power is not fully understood

until the system runs. When using real-time technologies, the

scalability of a system is better managed, as the effect of

adding resources (eg. processing power) can be understood

before the system is changed.

The JUNIPER conceptual tool-flow is illustrated in Figure 1.

Cloud applications are modelled in UML, using the Marte

subset to represent real-time and platform architecture aspects,

allowing real- time constraints to be modelled. The target

language is Java, adopting the Real-time Specification for Java

restrictions [16] (see section IV). To increase performance,

we ensure that the parallel nature of the hardware platform

is suitably abstracted to the application, and we accelerate
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Fig. 1. JUNIPER Conceptual Tool-Flow

key parts of the Java application, run-time and libraries (see

section V).
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Fig. 2. JUNIPER Software Architecture

The software architecture resulting from the tool-flow is

illustrated in Figure 2. The Real-Time Java application is exe-

cuted on a Real-time Java Virtual Machine [16] allowing for

both interpreted and compiled Java (the latter for performance

purposes). Appropriate support is provided for building a wide

range of distributed big data applications (see section IV) –

hence JUNIPER is not limited to a particular form of RTBD

application such as Hadoop, Spark or Storm [6], [2], [8], [7].

At run-time, monitoring and profiling of the developed ap-

plication and system infrastructure occurs. This permits further

modification of run-time scheduling parameters (i.e. time and

resource bandwidths allocated to individual applications and

processes), and of the accelerated components (i.e. changing

the components accelerated in the FPGA).

IV. JUNIPER PROGRAMMING MODEL

JUNIPER believes that the programming challenges for

RTBD applications are not well-addressed. Existing program-

ming models are based on standard desktop programming

languages and abstract hardware details (of both the target

node and the inter-node communications) in a way that makes

it difficult for the programmer to exploit the full power of the

underlying platform. JUNIPER defines a new programming

model based on Java 8 [22] 1 and the Real-Time Specification

for Java [16] to enable the development of systems that can

provide timing and resource usage guarantees. The program-

ming model has the following core principles:

• It is not possible to express an entire RTBD applications

at the source-code level, so elements of model-driven

engineering (MDE) are employed to ease development,

portability, and deployment.

• RTBD application developers need the ability to optimise

their software to reduce latency and increase throughput.

It is necessary to provide access to architectural features

(CPUs, memory layout, caches, communications, and

accelerators) in a portable way which is suited towards

the target domain.

• System optimisation should include real-time require-

ments and guarantees. The JUNIPER framework allows

the developer to reserve system resources (CPU time,

bandwidth) for high priority threads within the software.

A complete description of the programming model is outside

of the scope of this paper, so the remainder of this section will

instead provide an overview of the main features and concepts

of the JUNPER programming framework. More details can be

found in [11], [17].

A. Overview

The model has two levels:

1) Application: this considers the large-scale movement of

data; i.e. how data enters the application, how data

moves from program to program, and where data is

stored. It also describes the requirements placed on the

application (i.e. response times or required throughput).

At this level, communication is implemented using

MPI [5]. The programs of the application use MPI for

all coordination and data transfer.

2) Program: a node of the cluster is programmed using

a single Java program running inside a single JVM

(although the cloud infrastructure may map multiple

programs to the same physical server). The program

level focuses on efficient exploitation of the machine

through the use of architecture patterns and locales (see

section IV-B), and it makes use of reservations to ensure

real-time behaviour (section VI).

The concepts of Application and Program are illustrated

further in Figure 3.

The programming model specifies the design of a JUNIPER

application. A JUNIPER application exists at the cluster or

cloud level and is comprised of a set of Java programs that

use the JUNIPER API (henceforth called JUNIPER programs)

1Java 8 is the latest release of the Java language [22] and adds features to
aid big data programming via streaming. Lambda expressions are included,
being a way to express functional programming concepts in Java [23]. This
aids in minimising data dependencies and maximising parallelism.
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to communicate and coordinate to solve a problem. JUNIPER

programs are mapped to the nodes (servers) of the target clus-

ter, potentially multiple programs to a server. The architecture

of a single node is illustrated in Figure 4.

Fig. 3. A JUNIPER application is composed of JUNIPER programs, which
may be unique, or one of a group of identical program instances.

The graph of communications in the model is fixed. Each

program has a fixed set of input data flows and output data

flows. These are modelled at the MDE level. The only dy-

namism in the model is for situations where multiple identical

instances of the same program are required (such as the

mappers of a MapReduce application). A Program Group may

be defined, which replicates a given program a number of

times (subject to optional maximum and minimum bounds) –

the precise number of times being determined at run-time (eg.

subject to resource availability).

B. Exposing the Architecture

Key to the JUNIPER programming model is to control the

locality of computation and data, ie. control its proximity.

This has important benefits for real-time behaviour. Within the

programming model the programmer can dynamically discover

the host architecture and map code to a node that is close to

its data – noting that the host hardware architecture can be

dynamic in a cloud environment.

Within the model, a Locale is the unit of allocation for

mapping Java threads and objects to the CPUs and memories

Fig. 4. A single server in a JUNIPER cluster.

of the nodes. A locale is mapped to a subset of nodes within

the architecture, and will remain within that subset. The

approach taken is to provide factory methods to create threads

(including real-time threads and asynchronous event handlers)

and memory areas in the RTSJ. Creation of these objects

outside of these factory methods have no locality defined

and can be located at the JVMs discretion. A locale has the

following properties:

• The threads and objects encapsulated in a locale are

mapped by the JVM onto CPUs and into memories that

form an SMP architecture pattern within the hosting

platform; and also onto the FPGA acceleration platform.

• A locale is given a resource reservation that is the result

of a negotiation between the JVM and the host operating

system; where locales are allocated to the FPGA acceler-

ation platform, negotiation will include consideration of

resource allocation on the FPGA.

• A locale has a backing store which describes its local

memory (i.e. for heap and stack allocation). This is allo-

cated to the locale and not shared with any other. During

acceleration, this memory will be physically located on

the FPGA.

• References between acceleratable locales must be con-

trolled. The current acceleration design does not permit

the locale to contain references to other locales. Locales

must communicate and share data through the JUNIPER

Communications API, which uses bindings to MPI to

implement this functionality.

• The Java programming model requires either a garbage

collector (GC) or a scoped memory scheme (such as

found in the RTSJ) in order to reclaim dynamically

allocated memory. The acceleration scheme will assume

the use of scoped memories to remove the requirement

for a full GC.

In the JUNIPER approach, the hardware architecture is en-

capsulated as an architecture pattern. Patterns are used because

programmers of RTBD systems are more concerned about the

class of architecture than its precise details, eg. whether or

not coherent caches, or whether or not all memory is of equal

speed. Given the large platforms used for RTBD systems, the

programmer does not require the low-level control afforded

by techniques such as affinities [10], in which each thread is

bound to a specific set of individual CPUs. This is onerous

for large systems and lacks portability. Instead of individually

mapping threads to a cloud platform, the programmer wishes

to be able to express that a given large group of threads should

be located on a given large group of SMP-coupled processors,

at which point the run- time and infrastructure can be trusted to

schedule and place the threads appropriately. Given the above

points, the patterns exposed by the JUNIPER API are:

• NUMA: Provides few guarantees. It will contain a single

address space, but caches may be incoherent and memory

access times are unknown.

• ccNUMA: Constrains the NUMA architecture with the

guarantee that caches will be kept coherent from the point
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of view of the Java programmer. Memory access speeds

are still unknown and variable.

• SMP: Represents a tightly-coupled architecture in which

access times to memory are uniform within a reasonable

error bound. Variation is only due to bus contention or

cache effects, not because memory is at a greater distance

from the processors.

V. ACCELERATION

Fig. 5. Acceleration of the Programming Model using Java Components
Synthesised to FPGA

JUNIPER incorporates the ability for Java application and

OS components to be accelerated in hardware. An FPGA [12],

[1] is provided as a part of physical architecture to give a

platform for hardware acceleration – the FPGA has known

physical characteristics (ie. size, memory size etc.). We note

that this approach requires the provision of FPGAs within the

cloud platform 2. The JUNIPER approach makes use of these

FPGAs easily, without knowledge of FPGA design.

Within the JUNIPER programming model, a parallel Java

application is accelerated by placing statically identified and

selected locales within the FPGA (locales placed on the FPGA

remain notionally under the control of the JVM on the host

CPU). This is illustrated in Figure 5, where we note:

• Data Filter – part of the Java application will be respon-

sible for processing incoming data (for storage on disk),

this is placed on the FPGA (alongside the network input)

to allow fast processing;

• Java Application Locales – locales within the application

(statically) selected for acceleration on the FPGA. Com-

munication of structured data between locales on the CPU

and those on the FPGA is achieved via the JUNIPER API.

This approach requires integration of the FPGA with the OS

to enable efficient access to/from the FPGA for loading Java

components to the FPGA; also for monitoring etc – this is

considered in section VI.

The developer is required to identify the locales within

the application that are amenable to static acceleration

2The JUNIPER cloud platform at York incorporates FPGAs within some
of the nodes, being commodity FPGAs hosted on PCIe cards within a PC
based cloud. In general, FPGAs are being incorporated increasingly into cloud
platforms [14], particularly for streaming data handling [1].

on the FPGA. Such locales are termed Acceleratable Lo-
cale. JUNIPER contains a subclass of the Locale class

called AcceleratableLocale which includes an abstract

method initialise which creates all of the threads and

data that will be allocated inside that locale3. When an

AcceleratableLocale is created it is assigned to a

location, ie. a physical CPU or FPGA coprocessor. This is

analysed ahead of time during compilation so that the code

from the locale can be compiled for the FPGA.

Application locales executing as software on the FPGA

require communications to hardware locales on the FPGA.

This requires the ability to pass and share structured data

between software and hardware. This is achieved via the

JUNIPER API, which then passes data through to the FPGA

via the underlying OS (see section VI).

Due to space constraints on the FPGA, most

of the time it will not be possible to offload all

AcceleratableLocale’s to the FPGA simultaneously.

JUNIPER therefore includes support for dynamic acceleration

to allows the system to discover at run-time an optimum

selection of AcceleratableLocale’s to place on the

target FPGA without programmer intervention. This is done

through a combination of online performance monitoring and

online FPGA compilation. We note that this makes use of

FPGA partial dynamic reconfiguration techniques [27].

VI. OPERATING SYSTEM SUPPORT

The OS support within Linux developed for JUNIPER is

based upon provision of resource reservations. Resource reser-

vations [24] were proved as effective techniques to achieve the

goals of temporal isolation and real-time execution in open

systems. Essentially, reservations allow a fraction of the band-

width of a resource access to be reserved for a given process.

JUNIPER utilises the resource reservation framework of Lipari

et al [20] for CPUs, with further work extending the frame-

work for access to shared resources such as disks and storage,

using the M-BWI approach [15] and the Budget Fair Queueing

(BFQ) disk scheduler [26], [25]. Importantly, these extensions

work in conjunction with the standard RT PREEMPT patch

to Linux which adds preemption points to the kernel, by

replacing most kernel spin-locks with mutexes that support

Priority Inheritance and by moving interrupts and software

interrupts to kernel threads. The RT PREEMPT patch enables

the Linux kernel to be more deterministic.

A. Integration of FPGAs within OS

Integration of FPGAs within the programming model (see

section V) implemented upon a Linux platform requires sup-

port within Linux. JUNIPER extends Linux with additional

kernel modules providing:

• support for multiple locale components to be accelerated

on an FPGA simultaneously;

• communications support between Java software locales

(within a user-space process) and locales on an FPGA;

3Normal locales can allocate threads and data freely, subject to the normal
RTSJ restrictions
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• communications across PCIe between kernel and FPGA

board (physically located on the PCIe bus);

• a separate physical memory space for locales on an

FPGA, and a means for transferring data between CPU

and FPGA memory spaces;

• facility to input incoming network traffic direct to the

FPGA to be processed directly by the application data

filter on the FPGA before subsequently being passed to

the OS for storage within the filesystem.

B. Scheduling

Linux scheduling is effectively extended by the support

for resource reservations stated above. However, the scope

of this is limited to a single node. Within a cloud platform,

there lie higher level scheduling and allocation concerns, that

is which nodes within the cloud should be allocated to an

application, and how much parallelism should be employed

by the application in order to utilise the available resources.

Typical approaches available from the cloud computing

communities involve profiling of running applications to de-

termine how effectively they utilise resources. This allows

cloud schedulers to determine the best number of CPUs and

resources to allocate to an application – hence the number of

CPUs available to an application may dynamically change.

However, this only effects the degree of parallelism the

application can exploit. Within JUNIPER a high-level real-

time scheduling advisor is being developed based on statistical

analysis of worst case execution time and the analysis of

data dependency on RTBD application workflows. We note

that traditional real-time systems are not usually able to take

advantage of run-time profiling in a live system as they tend

not to have the spare CPUs to dedicate to gathering and

processing profiling data.

VII. CONCLUSIONS

This paper has outlined the JUNIPER approach for building

real-time big data applications for deployment in the cloud,

to enable real-time guarantees to be given to CPS using the

real-time big data applications. The approach addresses the

following key challenges: programming, timing guarantees and

scalability. The programming model ensures that sufficient

detail of the architecture is available to enable developers to

optimise their application; timing guarantees are enabled by

using resource reservation within the OS for both time and disk

access; performance is enhanced via hardware acceleration;

scalability is supported by both the programming model and

OS scheduling.

Whilst the paper shows some progress towards effective

real-time big data applications, the challenge remains to fur-

ther enhance the timeliness of such cloud applications. The

current proposed approach concentrates upon soft best-effort

approaches – the challenge remains to move these guarantees

towards more traditional real-time guarantees (eg. hard, or

weakly-hard).
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