11,984 research outputs found

    Special cases of online parallel job scheduling

    Get PDF
    In this paper we consider the online scheduling of jobs, which require processing on a number of machines simultaneously. These jobs are presented to a decision maker one by one, where the next job becomes known as soon as the current job is scheduled. The objective is to minimize the makespan. For the problem with three machines we give a 2.8-competitive algorithm, improving upon the 3-competitive greedy algorithm. For the special case with arbitrary number of machines, where the jobs appear in non-increasing order of machine requirement, we give a 2.4815-competitive algorithm, improving the 2.75-competitive greedy algorithm

    Preemptive scheduling on uniform parallel machines with controllable job processing times

    Get PDF
    In this paper, we provide a unified approach to solving preemptive scheduling problems with uniform parallel machines and controllable processing times. We demonstrate that a single criterion problem of minimizing total compression cost subject to the constraint that all due dates should be met can be formulated in terms of maximizing a linear function over a generalized polymatroid. This justifies applicability of the greedy approach and allows us to develop fast algorithms for solving the problem with arbitrary release and due dates as well as its special case with zero release dates and a common due date. For the bicriteria counterpart of the latter problem we develop an efficient algorithm that constructs the trade-off curve for minimizing the compression cost and the makespan

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load
    • …
    corecore