847 research outputs found

    Development Schemes of Electric Vehicle Charging Protocols and Implementation of Algorithms for Fast Charging under Dynamic Environments Leading towards Grid-to-Vehicle Integration

    Get PDF
    This thesis focuses on the development of electric vehicle (EV) charging protocols under a dynamic environment using artificial intelligence (AI), to achieve Vehicle-to-Grid (V2G) integration and promote automobile electrification. The proposed framework comprises three major complementary steps. Firstly, the DC fast charging scheme is developed under different ambient conditions such as temperature and relative humidity. Subsequently, the transient performance of the controller is improved while implementing the proposed DC fast charging scheme. Finally, various novel techno-economic scenarios and case studies are proposed to integrate EVs with the utility grid. The proposed novel scheme is composed of hierarchical stages; In the first stage, an investigation of the temperature or/and relative humidity impact on the charging process is implemented using the constant current-constant voltage (CC-CV) protocol. Where the relative humidity impact on the charging process was not investigated or mentioned in the literature survey. This was followed by the feedforward backpropagation neural network (FFBP-NN) classification algorithm supported by the statistical analysis of an instant charging current sample of only 10 seconds at any ambient condition. Then the FFBP-NN perfectly estimated the EV’s battery terminal voltage, charging current, and charging interval time with an error of 1% at the corresponding temperature and relative humidity. Then, a nonlinear identification model of the lithium-polymer ion battery dynamic behaviour is introduced based on the Hammerstein-Wiener (HW) model with an experimental error of 1.1876%. Compared with the CC-CV fast charging protocol, intelligent novel techniques based on the multistage charging current protocol (MSCC) are proposed using the Cuckoo optimization algorithm (COA). COA is applied to the Hierarchical technique (HT) and the Conditional random technique (CRT). Compared with the CC-CV charging protocol, an improvement in the charging efficiency of 8% and 14.1% was obtained by the HT and the CRT, respectively, in addition to a reduction in energy losses of 7.783% and 10.408% and a reduction in charging interval time of 18.1% and 22.45%, respectively. The stated charging protocols have been implemented throughout a smart charger. The charger comprises a DC-DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. The NNPC–LSTM controller was compared with the fuzzy logic (FL) and the conventional PID controllers and perfectly ensured that the optimum transient performance with a minimum battery terminal voltage ripple reached 1 mV with a very high-speed response of 1 ms in reaching the predetermined charging current stages. Finally, to alleviate the power demand pressure of the proposed EV charging framework on the utility grid, a novel smart techno-economic operation of an electric vehicle charging station (EVCS) in Egypt controlled by the aggregator is suggested based on a hierarchical model of multiple scenarios. The deterministic charging scheduling of the EVs is the upper stage of the model to balance the generated and consumed power of the station. Mixed-integer linear programming (MILP) is used to solve the first stage, where the EV charging peak demand value is reduced by 3.31% (4.5 kW). The second challenging stage is to maximize the EVCS profit whilst minimizing the EV charging tariff. In this stage, MILP and Markov Decision Process Reinforcement Learning (MDP-RL) resulted in an increase in EVCS revenue by 28.88% and 20.10%, respectively. Furthermore, the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies are applied to the stochastic EV parking across the day, controlled by the aggregator to alleviate the utility grid load demand. The aggregator determined the number of EVs that would participate in the electric power trade and sets the charging/discharging capacity level for each EV. The proposed model minimized the battery degradation cost while maximizing the revenue of the EV owner and minimizing the utility grid load demand based on the genetic algorithm (GA). The implemented procedure reduced the degradation cost by an average of 40.9256%, increased the EV SOC by 27%, and ensured an effective grid stabilization service by shaving the load demand to reach a predetermined grid average power across the day where the grid load demand decreased by 26.5% (371 kW)

    Optimization and Integration of Electric Vehicle Charging System in Coupled Transportation and Distribution Networks

    Get PDF
    With the development of the EV market, the demand for charging facilities is growing rapidly. The rapid increase in Electric Vehicle and different market factors bring challenges to the prediction of the penetration rate of EV number. The estimates of the uptake rate of EVs for light passenger use vary widely with some scenarios gradual and others aggressive. And there have been many effects on EV penetration rate from incentives, tax breaks, and market price. Given this background, this research is devoted to addressing a stochastic joint planning framework for both EV charging system and distribution network where the EV behaviours in both transportation network and electrical system are considered. And the planning issue is formulated as a multi-objective model with both the capital investment cost and service convenience optimized. The optimal planning of EV charging system in the urban area is the target geographical planning area in this work where the service radius and driving distance is relatively limited. The mathematical modelling of EV driving and charging behaviour in the urban area is developed

    Chance-constrained Calculation of the Reserve Service Provided by EV Charging Station Clusters in Energy Communities

    Get PDF
    The concept of energy community is currently under investigation as it is considered central into the energy transition process. One of the main aspects of the successful implementation of community lays in the energy management system that coordinates exchanges among prosumers. This paper deals with the optimal energy management of a local energy community of dc microgrids with electric vehicle charging stations, considering local reserve provided by storage units and vehicle batteries. A two-stage optimal procedure is proposed to assess the optimal scheduling of resources for each community participant. Additionally, the optimal up and down reserve levels able to cover random fluctuations in photovoltaic generation within each EV-based microgrid are determined by a set of specific chance constraints

    Scheduling of Resources in Renewable Energy Communities

    Get PDF
    This work presents a detailed study of the scheduling of power and energy resources in renewable energy communities (RECs). The study has been developed starting from the analysis of a single basic unit of the community, i.e., the prosumer and its microgrid, to the scheduling and expansion of the energy community concept with several prosumers through several scenarios. The individual scheduling problem of the prosumer has been studied as a day-ahead deterministic problem and as a multistage stochastic problem to consider uncertainties associated with energy generation and energy consumption. Furthermore, an approach has been formulated to consider the integration of bidirectional charging services of electrical vehicles within a local energy system with the presence of renewable generation. Moreover, this thesis focuses on the scenario in which direct energy transactions between prosumers located within a REC are allowed in addition to the energy transactions with the external energy provider. The day-ahead scheduling problem has been addressed by a centralized approach and by a distributed approach based on the alternating direction method of multipliers (ADMM). The developed approaches provide the scheduling of the available energy resources to limit the balancing action of the external grid and allocate the internal network losses to the corresponding energy transactions. Finally, the thesis presents a coordinated day-ahead and intra-day approach to provide the optimal scheduling of the resources in a REC. In this case, the ADMM-based procedure, which is aimed at minimizing the total energy procurement costs, is adapted to cope with the impact of the fluctuation of both the local energy generation and demand during the day. To achieve this, a day-ahead multistage stochastic optimization approach is combined with an intra-day decision-making procedure, able to adjust the scheduling of the energy resources according to the current operational conditions

    Mathematical Optimization for Routing and Logistic Problems

    Get PDF
    In this thesis, we focus on mathematical optimization models and algorithms for solving routing and logistic problems. The first contribution regards a path and mission planning problem, called Carrier-Vehicle Traveling Salesman Problem (CVTSP), for a system of heterogeneous vehicles. A Mixed-Integer Second Order Conic Programming (MISOCP) model and a Benders-like enumeration algorithm are presented for solving CVTSP. The second work concerns a class of routing problems, referred to as Interceptor Vehicle Routing Problems (IVRPs). They generalize VRPs in the sense that target points are allowed to move from their initial location according to a known motion. We present a novel MISOCP formulation and a Branch-and-Price algorithm based on a Lagrangian Relaxation of the vehicle-assignment constraints. Other two contributions focus on waste flow management problems: the former considers a deterministic setting in which a Mixed-Integer Linear Programming (MILP) formulation is used as a Decision Support System for a real-world waste operator, whereas the latter deals with the uncertainty of the waste generation amounts by means of Two-Stage Multiperiod Stochastic Mixed-Integer Programming formulations. Finally, we give an overview on the optimization challenges arising in electric car-sharing systems, both at strategic and tactical planning level
    • …
    corecore