1,964 research outputs found

    Data Driven Prediction Architecture for Autonomous Driving and its Application on Apollo Platform

    Full text link
    Autonomous Driving vehicles (ADV) are on road with large scales. For safe and efficient operations, ADVs must be able to predict the future states and iterative with road entities in complex, real-world driving scenarios. How to migrate a well-trained prediction model from one geo-fenced area to another is essential in scaling the ADV operation and is difficult most of the time since the terrains, traffic rules, entities distributions, driving/walking patterns would be largely different in different geo-fenced operation areas. In this paper, we introduce a highly automated learning-based prediction model pipeline, which has been deployed on Baidu Apollo self-driving platform, to support different prediction learning sub-modules' data annotation, feature extraction, model training/tuning and deployment. This pipeline is completely automatic without any human intervention and shows an up to 400\% efficiency increase in parameter tuning, when deployed at scale in different scenarios across nations.Comment: Accepted by the 31st IEEE Intelligent Vehicles Symposium (2020

    SAPI: Surroundings-Aware Vehicle Trajectory Prediction at Intersections

    Full text link
    In this work we propose a deep learning model, i.e., SAPI, to predict vehicle trajectories at intersections. SAPI uses an abstract way to represent and encode surrounding environment by utilizing information from real-time map, right-of-way, and surrounding traffic. The proposed model consists of two convolutional network (CNN) and recurrent neural network (RNN)-based encoders and one decoder. A refiner is proposed to conduct a look-back operation inside the model, in order to make full use of raw history trajectory information. We evaluate SAPI on a proprietary dataset collected in real-world intersections through autonomous vehicles. It is demonstrated that SAPI shows promising performance when predicting vehicle trajectories at intersection, and outperforms benchmark methods. The average displacement error(ADE) and final displacement error(FDE) for 6-second prediction are 1.84m and 4.32m respectively. We also show that the proposed model can accurately predict vehicle trajectories in different scenarios

    Learning Behavior Models for Interpreting and Predicting Traffic Situations

    Get PDF
    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees
    • …
    corecore