14 research outputs found

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Edge intelligence in smart grids : a survey on architectures, offloading models, cyber security measures, and challenges

    Get PDF
    The rapid development of new information and communication technologies (ICTs) and the deployment of advanced Internet of Things (IoT)-based devices has led to the study and implementation of edge computing technologies in smart grid (SG) systems. In addition, substantial work has been expended in the literature to incorporate artificial intelligence (AI) techniques into edge computing, resulting in the promising concept of edge intelligence (EI). Consequently, in this article, we provide an overview of the current state-of-the-art in terms of EI-based SG adoption from a range of angles, including architectures, computation offloading, and cybersecurity c oncerns. The basic objectives of this article are fourfold. To begin, we discuss EI and SGs separately. Then we highlight contemporary concepts closely related to edge computing, fundamental characteristics, and essential enabling technologies from an EI perspective. Additionally, we discuss how the use of AI has aided in optimizing the performance of edge computing. We have emphasized the important enabling technologies and applications of SGs from the perspective of EI-based SGs. Second, we explore both general edge computing and architectures based on EI from the perspective of SGs. Thirdly, two basic questions about computation offloading are discussed: what is computation offloading and why do we need it? Additionally, we divided the primary articles into two categories based on the number of users included in the model, either a single user or a multiple user instance. Finally, we review the cybersecurity threats with edge computing and the methods used to mitigate them in SGs. Therefore, this survey comes to the conclusion that most of the viable architectures for EI in smart grids often consist of three layers: device, edge, and cloud. In addition, it is crucial that computation offloading techniques must be framed as optimization problems and addressed effectively in order to increase system performance. This article typically intends to serve as a primer for emerging and interested scholars concerned with the study of EI in SGs.The Council for Scientific and Industrial Research (CSIR).https://www.mdpi.com/journal/jsanElectrical, Electronic and Computer Engineerin

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Content Caching and Delivery in Heterogeneous Vehicular Networks

    Get PDF
    Connected and automated vehicles (CAVs), which enable information exchange and content delivery in real time, are expected to revolutionize current transportation systems for better driving safety, traffic efficiency, and environmental sustainability. However, the emerging CAV applications such as content delivery pose stringent requirements on latency, throughput, reliability, and global connectivity. The current wireless networks face significant challenges to satisfy the requirements due to scarce radio spectrum resources, inflexibility to dynamic traffic demands, and geographic-constrained fixed infrastructure deployment. To empower multifarious CAV content delivery, heterogeneous vehicular networks (HetVNets), which integrate the terrestrial networks with aerial networks formed by unmanned aerial vehicles (UAVs) and space networks constituting of low Earth orbit (LEO) satellites, can guarantee reliable, flexible, cost-effective, and globally seamless service provisioning. In addition, edge caching is a promising solution to facilitate content delivery by caching popular files in the HetVNet access points (APs) to relieve the backhaul traffic with a lower delivery delay. The main technical issues are: 1) to fully reveal the potential of HetVNets for content delivery performance enhancement, content caching scheme design in HetVNets should jointly consider network characteristics, vehicle mobility patterns, content popularity, and APs’ caching capacities; 2) to fully exploit the controllable mobility and agility of UAVs to support dynamic vehicular content demands, the caching scheme and trajectory design for UAVs should be jointly optimized, which has not been well addressed due to their intricate inter-coupling relationships; and 3) for caching-based content delivery in HetVNets, a cooperative content delivery scheme should be designed to enable the cooperation among different network segments with ingenious utilization of heterogeneous network resources. In this thesis, we design the content caching and delivery schemes in the caching-enabled HetVNet to address the three technical issues. First, we study the content caching in HetVNets with fixed terrestrial APs including cellular base stations (CBSs), Wi-Fi roadside units (RSUs), and TV white space (TVWS) stations. To characterize the intermittent network connection caused by limited network coverage and high vehicle mobility, we establish an on-off model with service interruptions to describe the vehicular content delivery process. Content coding then is leveraged to resist the impact of unstable network connections and enhance caching efficiency. By jointly considering file characteristics and network conditions, the content placement is formulated as an integer linear programming (ILP) problem. Adopting the idea of the student admission model, the ILP problem is then transformed into a many-to-one matching problem between content files and HetVNet APs and solved by our proposed stable-matching-based caching scheme. Simulation results demonstrate that the proposed scheme can achieve near-optimal performances in terms of delivery delay and offloading ratio with a low complexity. Second, UAV-aided caching is considered to assist vehicular content delivery in aerial-ground vehicular networks (AGVN) and a joint caching and trajectory optimization (JCTO) problem is investigated to jointly optimize content caching, content delivery, and UAV trajectory. To enable real-time decision-making in highly dynamic vehicular networks, we propose a deep supervised learning scheme to solve the JCTO problem. Specifically, we first devise a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content caching policy, we design a time-based graph decomposition method to jointly optimize content delivery and UAV trajectory, with which we then leverage the particle swarm optimization algorithm to optimize the content caching. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make online decisions. With the CNN-based model, a function mapping the input network information to output decisions can be intelligently learnt to make timely inferences. Extensive trace-driven experiments are conducted to demonstrate the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model. Third, we investigate caching-assisted cooperative content delivery in space-air-ground integrated vehicular networks (SAGVNs), where vehicular content requests can be cooperatively served by multiple APs in space, aerial, and terrestrial networks. In specific, a joint optimization problem of vehicle-to-AP association, bandwidth allocation, and content delivery ratio, referred to as the ABC problem, is formulated to minimize the overall content delivery delay while satisfying vehicular quality-of-service (QoS) requirements. To address the tightly-coupled optimization variables, we propose a load- and mobility-aware ABC (LMA-ABC) scheme to solve the joint optimization problem as follows. We first decompose the ABC problem to optimize the content delivery ratio. Then the impact of bandwidth allocation on the achievable delay performance is analyzed, and an effect of diminishing delay performance gain is revealed. Based on the analysis results, the LMA-ABC scheme is designed with the consideration of user fairness, load balancing, and vehicle mobility. Simulation results demonstrate that the proposed LMA-ABC scheme can significantly reduce the cooperative content delivery delay compared to the benchmark schemes. In summary, we have investigated the content caching in terrestrial networks with fixed APs, joint caching and trajectory optimization in the AGVN, and caching-assisted cooperative content delivery in the SAGVN. The proposed schemes and theoretical results should provide useful guidelines for future research in the caching scheme design and efficient utilization of network resources in caching-enabled heterogeneous wireless networks

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC

    Multi-Drone-Cell 3D Trajectory Planning and Resource Allocation for Drone-Assisted Radio Access Networks

    Get PDF
    Equipped with communication modules, drones can perform as drone-cells (DCs) that provide on-demand communication services to users in various scenarios, such as traffic monitoring, Internet of things (IoT) data collections, and temporal communication provisioning. As the aerial relay nodes between terrestrial users and base stations (BSs), DCs are leveraged to extend wireless connections for uncovered users of radio access networks (RAN), which forms the drone-assisted RAN (DA-RAN). In DA-RAN, the communication coverage, quality-of-service (QoS) performance and deployment flexibility can be improved due to the line-of-sight DC-to-ground (D2G) wireless links and the dynamic deployment capabilities of DCs. Considering the special mobility pattern, channel model, energy consumption, and other features of DCs, it is essential yet challenging to design the flying trajectories and resource allocation schemes for DA-RAN. In specific, given the emerging D2G communication models and dynamic deployment capability of DCs, new DC deployment strategies are required by DA-RAN. Moreover, to exploit the fully controlled mobility of DCs and promote the user fairness, the flying trajectories of DCs and the D2G communications must be jointly optimized. Further, to serve the high-mobility users (e.g. vehicular users) whose mobility patterns are hard to be modeled, both the trajectory planning and resource allocation schemes for DA-RAN should be re-designed to adapt to the variations of terrestrial traffic. To address the above challenges, in this thesis, we propose a DA-RAN architecture in which multiple DCs are leveraged to relay data between BSs and terrestrial users. Based on the theoretical analyses of the D2G communication, DC energy consumption, and DC mobility features, the deployment, trajectory planning and communication resource allocation of multiple DCs are jointly investigated for both quasi-static and high-mobility users. We first analyze the communication coverage, drone-to-BS (D2B) backhaul link quality, and optimal flying height of the DC according to the state-of-the-art drone-to-user (D2U) and D2B channel models. We then formulate the multi-DC three-dimensional (3D) deployment problem with the objective of maximizing the ratio of effectively covered users while guaranteeing D2B link qualities. To solve the problem, a per-drone iterated particle swarm optimization (DI-PSO) algorithm is proposed, which prevents the large particle searching space and the high violating probability of constraints existing in the pure PSO based algorithm. Simulations show that the DI-PSO algorithm can achieve higher coverage ratio with less complexity comparing to the pure PSO based algorithm. Secondly, to improve overall network performance and the fairness among edge and central users, we design 3D trajectories for multiple DCs in DA-RAN. The multi-DC 3D trajectory planning and scheduling is formulated as a mixed integer non-linear programming (MINLP) problem with the objective of maximizing the average D2U throughput. To address the non-convexity and NP-hardness of the MINLP problem due to the 3D trajectory, we first decouple the MINLP problem into multiple integer linear programming and quasi-convex sub-problems in which user association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DC 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation scheme and a search-based start slot scheduling scheme are also designed to improve network performance and control mutual interference between DCs, respectively. Compared with the static DBS deployment, the proposed trajectory planning scheme can achieve much lower average value and standard deviation of D2U pathloss, which indicate the improvements of network throughput and user fairness. Thirdly, considering the highly dynamic and uncertain environment composed by high-mobility users, we propose a hierarchical deep reinforcement learning (DRL) based multi-DC trajectory planning and resource allocation (HDRLTPRA) scheme for high-mobility users. The objective is to maximize the accumulative network throughput while satisfying user fairness, DC power consumption, and DC-to-ground link quality constraints. To address the high uncertainties of environment, we decouple the multi-DC TPRA problem into two hierarchical sub-problems, i.e., the higher-level global trajectory planning sub-problem and the lower-level local TPRA sub-problem. First, the global trajectory planning sub-problem is to address trajectory planning for multiple DCs in the RAN over a long time period. To solve the sub-problem, we propose a multi-agent DRL based global trajectory planning (MARL-GTP) algorithm in which the non-stationary state space caused by multi-DC environment is addressed by the multi-agent fingerprint technique. Second, based on the global trajectory planning results, the local TPRA (LTPRA) sub-problem is investigated independently for each DC to control the movement and transmit power allocation based on the real-time user traffic variations. A deep deterministic policy gradient based LTPRA (DDPG-LTPRA) algorithm is then proposed to solve the LTPRA sub-problem. With the two algorithms addressing both sub-problems at different decision granularities, the multi-DC TPRA problem can be resolved by the HDRLTPRA scheme. Simulation results show that 40% network throughput improvement can be achieved by the proposed HDRLTPRA scheme over the non-learning-based TPRA scheme. In summary, we have investigated the multi-DC 3D deployment, trajectory planning and communication resource allocation in DA-RAN considering different user mobility patterns in this thesis. The proposed schemes and theoretical results should provide useful guidelines for future research in DC trajectory planning, resource allocation, as well as the real deployment of DCs in complex environments with diversified users
    corecore