2 research outputs found

    Online sparse collapsed hybrid variational-gibbs algorithm for hierarchical Dirichlet process topic models

    No full text
    Topic models for text analysis are most commonly trained using either Gibbs sampling or variational Bayes. Recently, hybrid variational-Gibbs algorithms have been found to combine the best of both worlds. Variational algorithms are fast to converge and more efficient for inference on new documents. Gibbs sampling enables sparse updates since each token is only associated with one topic instead of a distribution over all topics. Additionally, Gibbs sampling is unbiased. Although Gibbs sampling takes longer to converge, it is guaranteed to arrive at the true posterior after infinitely many iterations. By combining the two methods it is possible to reduce the bias of variational methods while simultaneously speeding up variational updates. This idea has previously been applied to standard latent Dirichlet allocation (LDA). We propose a new sampling method that enables the application of the idea to the nonparametric version of LDA, hierarchical Dirichlet process topic models. Our fast sampling method leads to a significant speedup of variational updates as compared to other sampling methods. Experiments show that training of our topic model converges to a better log-likelihood than previously existing variational methods and converges faster than Gibbs sampling in the batch setting

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    corecore