21,104 research outputs found

    Confusion-Based Online Learning and a Passive-Aggressive Scheme

    No full text
    International audienceThis paper provides the first ---to the best of our knowledge--- analysis of online learning algorithms for multiclass problems when the {\em confusion} matrix is taken as a performance measure. The work builds upon recent and elegant results on noncommutative concentration inequalities, i.e. concentration inequalities that apply to matrices, and, more precisely, to matrix martingales. We do establish generalization bounds for online learning algorithms and show how the theoretical study motivates the proposition of a new confusion-friendly learning procedure. This learning algorithm, called \copa (for COnfusion Passive-Aggressive) is a passive-aggressive learning algorithm; it is shown that the update equations for \copa can be computed analytically and, henceforth, there is no need to recourse to any optimization package to implement it

    Coactive Learning for Locally Optimal Problem Solving

    Full text link
    Coactive learning is an online problem solving setting where the solutions provided by a solver are interactively improved by a domain expert, which in turn drives learning. In this paper we extend the study of coactive learning to problems where obtaining a globally optimal or near-optimal solution may be intractable or where an expert can only be expected to make small, local improvements to a candidate solution. The goal of learning in this new setting is to minimize the cost as measured by the expert effort over time. We first establish theoretical bounds on the average cost of the existing coactive Perceptron algorithm. In addition, we consider new online algorithms that use cost-sensitive and Passive-Aggressive (PA) updates, showing similar or improved theoretical bounds. We provide an empirical evaluation of the learners in various domains, which show that the Perceptron based algorithms are quite effective and that unlike the case for online classification, the PA algorithms do not yield significant performance gains.Comment: AAAI 2014 paper, including appendice

    Online passive aggressive active learning and its applications

    Get PDF
    Abstract We investigate online active learning techniques for classification tasks in data stream mining applications. Unlike traditional learning approaches (either batch or online learning) that often require to request the class label of each incoming instance, online active learning queries only a subset of informative incoming instances to update the classification model, which aims to maximize classification performance using minimal human labeling effort during the entire online stream data mining task. In this paper, we present a new family of algorithms for online active learning called Passive-Aggressive Active (PAA) learning algorithms by adapting the popular Passive-Aggressive algorithms in an online active learning setting. Unlike the conventional Perceptron-based approach that employs only the misclassified instances for updating the model, the proposed PAA learning algorithms not only use the misclassified instances to update the classifier, but also exploit correctly classified examples with low prediction confidence. We theoretically analyse the mistake bounds of the proposed algorithms and conduct extensive experiments to examine their empirical performance, in which encouraging results show clear advantages of our algorithms over the baselines

    Towards mining trapezoidal data streams

    Full text link
    © 2015 IEEE. We study a new problem of learning from doubly-streaming data where both data volume and feature space increase over time. We refer to the problem as mining trapezoidal data streams. The problem is challenging because both data volume and feature space are increasing, to which existing online learning, online feature selection and streaming feature selection algorithms are inapplicable. We propose a new Sparse Trapezoidal Streaming Data mining algorithm (STSD) and its two variants which combine online learning and online feature selection to enable learning trapezoidal data streams with infinite training instances and features. Specifically, when new training instances carrying new features arrive, the classifier updates the existing features by following the passive-aggressive update rule used in online learning and updates the new features with the structural risk minimization principle. Feature sparsity is also introduced using the projected truncation techniques. Extensive experiments on the demonstrated UCI data sets show the performance of the proposed algorithms
    corecore