15,533 research outputs found

    Online Maximum Matching with Recourse

    Get PDF
    We study the online maximum matching problem in a model in which the edges are associated with a known recourse parameter k. An online algorithm for this problem has to maintain a valid matching while edges of the underlying graph are presented one after the other. At any moment the algorithm can decide to include an edge into the matching or to exclude it, under the restriction that at most k such actions per edge take place, where k is typically a small constant. This problem was introduced and studied in the context of general online packing problems with recourse by Avitabile et al. [Avitabile et al., 2013], whereas the special case k=2 was studied by Boyar et al. [Boyar et al., 2017]. In the first part of this paper, we consider the edge arrival model, in which an arriving edge never disappears from the graph. Here, we first show an improved analysis on the performance of the algorithm AMP given in [Avitabile et al., 2013], by exploiting the structure of the matching problem. In addition, we extend the result of [Boyar et al., 2017] and show that the greedy algorithm has competitive ratio 3/2 for every even k and ratio 2 for every odd k. Moreover, we present and analyze an improvement of the greedy algorithm which we call L-Greedy, and we show that for small values of k it outperforms the algorithm of [Avitabile et al., 2013]. In terms of lower bounds, we show that no deterministic algorithm better than 1+1/(k-1) exists, improving upon the lower bound of 1+1/k shown in [Avitabile et al., 2013]. The second part of the paper is devoted to the edge arrival/departure model, which is the fully dynamic variant of online matching with recourse. The analysis of L-Greedy and AMP carry through in this model; moreover we show a lower bound of (k^2-3k+6)/(k^2-4k+7) for all even k >= 4. For k in {2,3}, the competitive ratio is 3/2

    Dynamic Matching Algorithms Under Vertex Updates

    Get PDF
    Dynamic graph matching algorithms have been extensively studied, but mostly under edge updates. This paper concerns dynamic matching algorithms under vertex updates, where in each update step a single vertex is either inserted or deleted along with its incident edges. A basic setting arising in online algorithms and studied by Bosek et al. [FOCS\u2714] and Bernstein et al. [SODA\u2718] is that of dynamic approximate maximum cardinality matching (MCM) in bipartite graphs in which one side is fixed and vertices on the other side either arrive or depart via vertex updates. In the BASIC-incremental setting, vertices only arrive, while in the BASIC-decremental setting vertices only depart. When vertices can both arrive and depart, we have the BASIC-dynamic setting. In this paper we also consider the setting in which both sides of the bipartite graph are dynamic. We call this the MEDIUM-dynamic setting, and MEDIUM-decremental is the restriction when vertices can only depart. The GENERAL-dynamic setting is when the graph is not necessarily bipartite and the vertices can both depart and arrive. Denote by K the total number of edges inserted and deleted to and from the graph throughout the entire update sequence. A well-studied measure, the recourse of a dynamic matching algorithm is the number of changes made to the matching per step. We largely focus on Maximal Matching (MM) which is a 2-approximation to the MCM. Our main results are as follows. - In the BASIC-dynamic setting, there is a straightforward algorithm for maintaining a MM, with a total runtime of O(K) and constant worst-case recourse. In fact, this algorithm never removes an edge from the matching; we refer to such an algorithm as irrevocable. - For the MEDIUM-dynamic setting we give a strong conditional lower bound that even holds in the MEDIUM-decremental setting: if for any fixed ? > 0, there is an irrevocable decremental MM algorithm with a total runtime of O(K ? n^{1-?}), this would refute the OMv conjecture; a similar (but weaker) hardness result can be achieved via a reduction from the Triangle Detection conjecture. - Next, we consider the GENERAL-dynamic setting, and design an MM algorithm with a total runtime of O(K) and constant worst-case recourse. We achieve this result via a 1-revocable algorithm, which may remove just one edge per update step. As argued above, an irrevocable algorithm with such a runtime is not likely to exist. - Finally, back to the BASIC-dynamic setting, we present an algorithm with a total runtime of O(K), which provides an (e/(e-1))-approximation to the MCM. To this end, we build on the classic "ranking" online algorithm by Karp et al. [STOC\u2790]. Beyond the results, our work draws connections between the areas of dynamic graph algorithms and online algorithms, and it proposes several open questions that seem to be overlooked thus far

    Relaxing the Irrevocability Requirement for Online Graph Algorithms

    Get PDF
    Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later, we consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we also consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. For Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, but for Vertex Cover the Late Accept model is sufficient and for Minimum Spanning Forest the Late Reject model is sufficient. The Matching problem has a competitive ratio of 2, but in the Late Accept/Reject model, its competitive ratio is 3/2

    Generation of Fourier transform limited heralded single photons

    Full text link
    In this paper we study the spectral (temporal) properties of heralded single photon wavepackets, triggered by the detection of an idler photon in the process of parametric downconversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier- transform limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfilment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wavepackets.Comment: 10 pages, 3 figure, PHYSICAL REVIEW A 75, 02381
    • ā€¦
    corecore