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Abstract
We study the online maximum matching problem in a model in which the edges are associated
with a known recourse parameter k. An online algorithm for this problem has to maintain a
valid matching while edges of the underlying graph are presented one after the other. At any
moment the algorithm can decide to include an edge into the matching or to exclude it, under the
restriction that at most k such actions per edge take place, where k is typically a small constant.
This problem was introduced and studied in the context of general online packing problems with
recourse by Avitabile et al. [1], whereas the special case k = 2 was studied by Boyar et al. [3].

In the first part of this paper, we consider the edge arrival model, in which an arriving edge
never disappears from the graph. Here, we first show an improved analysis on the performance of
the algorithm AMP given in [1], by exploiting the structure of the matching problem. In addition,
we extend the result of [3] and show that the greedy algorithm has competitive ratio 3/2 for every
even k and ratio 2 for every odd k. Moreover, we present and analyze an improvement of the
greedy algorithm which we call L-Greedy, and we show that for small values of k it outperforms
the algorithm of [1]. In terms of lower bounds, we show that no deterministic algorithm better
than 1 + 1/(k − 1) exists, improving upon the lower bound of 1 + 1/k shown in [1].

The second part of the paper is devoted to the edge arrival/departure model, which is the
fully dynamic variant of online matching with recourse. The analysis of L-Greedy and AMP
carry through in this model; moreover we show a lower bound of k2−3k+6

k2−4k+7 for all even k ≥ 4. For
k ∈ {2, 3}, the competitive ratio is 3/2.
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8:2 Online Maximum Matching with Recourse

1 Introduction

In the standard framework of online computation, the input to the algorithm is revealed
incrementally, i.e., request by request. For each such requested input item, the online
algorithm must make a decision that is typically irrevocable, in the sense that the algorithm
commits, in a permanent manner, to the decision associated with the request. More precisely,
the algorithm may not alter any previously made decisions while considering later requests.
This rather stringent constraint is meant to capture what informally can be described as
“the past cannot be undone”; equally significantly, it is at the heart of adversarial arguments
that can be used to argue that the competitive ratio of a given online problem cannot be
improved beyond a certain bound.

Nevertheless, there are real-life applications in which some (limited) rearrangement of
the online solution during the execution of the algorithm may be doable, or even requisite.
For instance, online call admission protocols may sporadically reconfigure the virtual paths
assigned in the network. For a different example, in online scheduling (or resource allocation)
problems, it may be permissible for a job to be transfered to a processor other than the one
specified by the original decision associated with the job. Clearly, a trade-off is to be found
between the guaranteed competitive ratio and the cost of re-optimizing the current solution.
Different approaches to this objective have been considered. One such approach has studied
the minimum total re-optimization cost required in order to maintain an optimal solution,
see Bernstein et al. [2]. Another approach has focused on the best achievable competitive
ratio when there is some bound on the allowed re-optimization, which has been first studied
by Avitabile et al. [1], and is the main model we consider in this paper.

More specifically, we study the online maximum cardinality matching problem, in which
the goal is to maintain a vertex disjoint edge set of maximum cardinality for a given graph.
Two different online models have been studied in the past. In the vertex arrival model, vertices
arrive in online fashion, revealing, at the same time, the edges incident to previously arrived
vertices. This model has mainly been considered for bipartite graphs, with left side vertices
arriving online, and right side vertices being initially known (see the survey [16]). In the edge
arrival model the edges arrive online in arbitrary order, revealing at the same time incident
vertices. We emphasize that in this work we consider the maximum cardinality matching
problem; some previous work (with or without recourse) has considered the generalized
weighted matching problem, in which each edge has a weight and the objective is to maximize
the weight of matched edges.

In the standard model, every edge constitutes a request and has to be immediately either
accepted in the matching, or rejected. To quantify the impact of recourse, several models
have been proposed that relax the irrevocable nature of a decision. In the late reject model
[3], which is also called the preemptive model [5], an edge can be accepted only upon its
arrival, but can be later rejected. In the edge-bounded recourse model, introduced in [1], the
algorithm can switch between accepting and rejecting an edge that has already appeared,
but is allowed up to k such modifications per edge. We emphasize that the initial default
state of an edge is rejected, and therefore rejecting a newly arriving edge does not count as
decision modification. However, accepting an edge or rejecting a previously accepted edge
does count as a decision modification. For concreteness, we call this problem the online
maximum cardinality matching problem with edge-bounded recourse. Boyar et al. [3] refer
to this model for k = 1 as the late accept model, and for k = 2 as the late accept/reject
model. Clearly, the competitive ratio is monotone in k, and our objective is to quantify this
dependency. Figure 1 illustrates the algorithm’s actions under the different models.
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Late reject model, also called free disposal or preemptive model.
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Late accept model, also called edge 1-bounded recourse model.
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Edge-bounded recourse model with general parameter k.

Figure 1 Illustration of the actions of an online matching algorithm under the different edge-arrival
models with recourse.

In this work we also introduce and study the setting in which edges may undergo both
arrivals and departures. In other words, edges may not only arrive (in the form of a request),
but may also disappear adversarially (subsequently to their appearance). This setting is
motivated by similar models that have been studied in the context of the online Steiner tree
problem [9]. We call this problem the online maximum matching problem under the edge
arrival/departure model with edge-bounded recourse. For this problem, we further distinguish
two models concerning the edge departures. In the full departure model, the adversary
is allowed to delete any edge in the graph, and thus also any edge that may have been
provisionally accepted by the online algorithm. We show that this model is quite restrictive,
since it yields excessive power to the adversary. We thus also study the limited departure
model, in which the adversary may delete only edges not currently accepted by the online
algorithm.

The limited departure setting can also model some natural applications related to resource
allocation. For instance, consider a bipartite graph representing compatibility between tasks
and workers, and that we seek to maximize the number of tasks assigned to workers. The
compatibility of tasks and worker skills can change over time. Then the limited departure
model stipulates that if worker w remains assigned to task t by the online algorithm, then w
does not lose his qualification for t, in the sense that the worker has a continual occupation
with the said task and maintains the required skills for the task. However, once the online
algorithm decides to remove worker w from task t (i.e., the online algorithm provisionally
rejects edge (w, t)), then the worker might lose his qualification for the task over time.

MFCS 2018



8:4 Online Maximum Matching with Recourse

An online algorithm ALG for a maximization problem is said to be c-competitive if there
is a constant d such that ALG(σ) ≥ OPT(σ)/c−d, for all request sequences σ. Here ALG(σ)
stands for the objective value of the solution produced by ALG on σ, while OPT(σ) stands
for the value of the optimal solution. If d = 0, the algorithm is called strictly c-competitive.
Note that some previous work on the matching problem has used the reciprocal ratio. The
smallest c for which an online algorithm ALG is c-competitive is called the competitive
ratio of ALG. The strict competitive ratio is defined similarly. If it so happens that this
minimum value does not exist, the competitive ratio is actually defined by the corresponding
infimum. In this setting an upper bound on the (strict or not) competitive ratio establishes
the performance guarantee of an online algorithm, whereas a lower bound is a negative result.

Both upper and lower bounds in this work are shown for the strict competitive ratio.
This implies that the upper bounds carry over to the more general definition, but this
generalization does not necessarily hold for the lower bounds. We emphasize, however, that
the known lower bounds for edge-bounded recourse problems in [1, 3] are likewise expressed
in terms of the strict competitive ratio. This is due, perhaps, to difficulties in applying
techniques that extend the lower bounds to the standard definition of the competitive ratio
that are inherent to the recourse setting, and which do not arise in the traditional online
framework of irrevocable decisions. Specifically, it is not obvious how to use techniques
based on multiple copies of an adversarial instance in order to lower-bound the performance
of any online algorithm, although this may be possible for specific online algorithms. For
convenience, we will henceforth refer to the strict competitive ratio as simply the “competitive
ratio”.

Related work

Several online optimization problems have been studied under the recourse setting. The
broad objective is to quantify the trade-off between the competitive ratio and a measure
on the modifications allowed on the solution. Some representative examples include online
problems such as minimum spanning trees and TSP [15], Steiner trees [9, 8], knapsack
problems [11, 12], assignment problems in bipartite unweighted graphs [10], and general
packing problems [1]. In the remainder of this section we review work related to online
maximum matching.

Online matching in the standard model. For online weighted matching in the standard
model (without recourse), it is easy to see that no algorithm can achieve a bounded competitive
ratio. This holds for both the vertex and the edge arrival models. For unweighted matching,
the seminal work of Karp et al. [13, 7] gave a randomized online algorithm with competitive
ratio e/(e − 1) in the vertex arrival model together with a matching lower bound on any
online algorithm. For the edge arrival model and the randomized competitive ratio, [4]
showed a lower bound of (3 + 1/ϕ2)/2, where ϕ is the golden ratio, as well as an upper bound
of 1.8 for the special case of forests.

It is well known that any inclusion-wise maximal matching has cardinality at least half
of the optimal maximum cardinality matching. From this it follows that the greedy online
algorithm has competitive ratio at most 2, which in the standard model is optimal among all
deterministic online algorithms.

Late reject. In the vertex arrival model, the greedy algorithm achieves trivially the com-
petitive ratio of 2, which is optimal for all deterministic online algorithms. The situation
differs in the edge arrival model. Epstein et al. [6] showed that for online weighted matching,



S. Angelopoulos, C. Dürr, and S. Jin 8:5

the deterministic competitive ratio is exactly 3 + 2
√

2 ≈ 5.828, as the upper bound of [14]
matches the lower bound of [18]. The same paper [6] shows that the randomized competitive
ratio is between 1 + log 2 ≈ 1.693 and 5.356. Chiplunkar et al. [5] presented a randomized
28/15-competitive algorithm for trees and a 4/3-competitive algorithm for paths.

Edge k-bounded recourse. This model was introduced and studied by Avitabile et al. [1]
for the edge arrival setting, in the context of a much broader class of online packing problems.
They gave an algorithm, which we call AMP, that combines doubling techniques with optimal
solutions to offline instances of the problem, which has competitive ratio 1 +O

(
log k

k

)
(see

Section 2.1 for an analysis of AMP). On the negative side, they showed that no randomized
algorithm can be better than 1 + 1/(9k− 1)-competitive; we note also that their construction
implies a lower bound of 1 + 1/k for all deterministic algorithms.

Boyar et al. [3] showed that the deterministic competitive ratio is 2 for k = 1 and 3/2 for
k = 2, and these optimal ratios are achieved by the greedy algorithm. Moreover, [3] studied
several other problems for a value of the recourse parameter equal to 2, such as independent
set, vertex cover and minimum spanning forest.

Minimizing recourse. Bernstein et al. [2] studied a different recourse model in which the
algorithm has to maintain an optimal matching, while minimizing a recourse measure, namely
the number of times edges enter or leave the matching maintained by the algorithm. They
considered the setting of a bipartite graph and the vertex arrival model and showed that a
simple greedy algorithm achieves optimality using O(n log2 n) replacements, where n is the
number of nodes in the arriving bipartition, whereas the corresponding lower bound for any
replacement strategy is Ω(n logn).

The results of Avitabile et al. [1] were originally formulated in a similar dual setting.
More precisely, [1] asks the question: how big should the edge budget k be such that there is
a 1 + ε competitive online algorithm that makes at most k changes per edge? They showed
that k = O(log(1/ε)/ε) suffices.

Contribution of this work

In the first part of this work, we study the online matching problem with edge k-bounded
recourse under the edge arrival model. For this problem, we provide improvements on both
upper and lower bounds. First, we revisit the doubling algorithm of [1] that was originally
analyzed in the general context of online packing problems. We give a better analysis,
specifically for the problem at hand, that uses concepts and ideas related to the matching
problem; we also show that the AMP algorithm has competitive ratio 1 + O( log k

k ). On
the negative side, we show that no deterministic algorithm is better than 1 + 1/(k − 1)
competitive, improving upon the known bound of 1 + 1/k of [1].

At first sight these improvements may seem marginal; however one should take into
consideration that k is typically a small parameter, and thus the improvements are by no
means negligible. In this spirit, we propose and analyze a variant of the greedy algorithm
which we call L-Greedy. This algorithm applies, at any step, augmenting paths as long as
their length is at most 2L + 1. We show that for a suitable choice of L, this algorithm is
(1 +O(1/

√
k))-competitive. While this algorithm is thus not superior to AMP for large k

(and more specifically, to its improved analysis in the context of the matching problem), for
small k (and in particular, for k ≤ 20) it does achieve an improved competitive ratio. Boyar
et al. [3] showed that the greedy algorithm is 3/2-competitive for k = 2. We extended this
result to all even k, while for odd k, the competitive ratio is 2.

MFCS 2018
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In terms of techniques, we analyze both AMP and L-Greedy using amortization argu-
ments in which the profit of the algorithms is expressed in terms of weights appropriately
distributed over nodes in the graph. We achieve these improvements by exploiting properties
of augmenting paths in matching algorithms.

The second part of the paper is devoted to the edge arrival/departure model, which is the
fully dynamic variant of the online matching problem. First, we observe that the analysis of
L-Greedy and AMP carries through in this model as well. On the negative side, we show a
lower bound of (k2− 3k+ 6)/(k2− 4k+ 7) for all even k ≥ 4. For k ∈ {2, 3}, the competitive
ratio is 3/2. We obtain the lower bounds by modeling the game between the algorithm and
the adversary as a game played over strings of numbers 0 up to k.

We note that, for the analysis of AMP and of L-Greedy, we assume that k is even.
This assumption is borrowed from [1] and is required for the analysis. Of course for odd
k ≥ 3 these algorithms can be run with budget k − 1, providing a valid upper bound on the
competitive ratio. Note that our lower bound in the arrival model holds for all values of k.

Due to space limitations some of the proofs are omitted in this paper.

1.1 Preliminaries
A matching in a graph G = (V,E) is a set of edges M ⊆ E with disjoint endpoints. A
vertex v ∈ V is said to be matched by M if there is an edge e ∈ M incident to v, and is
unmatched otherwise. A key concept in maximum matching algorithms is the notion of an
augmenting alternating path, or simply augmenting path. A path P in G is a sequence of
vertices v0, v1, . . . , v` for some length ` ≥ 2, such that (vi, vi+1) ∈ E for all i = 0, . . . , `−1. It
is said to be alternating with respect to M if every other edge of P belongs to M . Moreover
it is said to be augmenting if the first and the last vertex is unmatched by M . Applying such
a path P to M consists in removing from M the edges in M ∩ P and adding the edges in
P \M . The resulting matching has cardinality M + 1, and every previously matched vertex
remains matched.

We define some concepts that will be useful in the analysis of algorithms throughout the
paper. We will associate each edge with a type which is an integer in [0, k]. An edge is of
type i if it has undergone i decision flips by the algorithm. Hence, for an edge of type k,
where k is the recourse budget, its decision has been finalized, and cannot change further;
we call such an edge blocked. The type of a path P is defined by the sequence of the types of
its edges, and to make this concept unambiguous, we choose between the two orientations
of the path the one that results in the lexicographically minimal such sequence. Note that
when the algorithm applies some augmenting path P to its current matching M , then the
type of every edge in P is increased by 1. Moreover, the two extreme edges of an augmenting
path are of type 0, because the endpoints of P are unmatched. We will call a path blocked if
it contains a blocked edge.

2 The edge arrival model

2.1 The algorithm AMP
In the more general online set packing problem sets arrive online and the goal is to maintain a
collection of disjoint sets, maximizing their number. Avitabile et al. [1] proposed the doubling
algorithm which is defined for even k only. It has a parameter r > 1 and there is a decision
variable for every set which can be changed at most k times. The algorithm works in phases,
sequentially numbered by an integer p. Initially p = 0, and ALG0 = ∅. Let ` be the largest
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integer such that the optimal solution has value at least r`, and let ` be −∞ if the optimal
solution is empty. Whenever this value increases, the algorithms starts a new phase. We
define `(p) as the value ` during phase p. We have `(p) + i ≤ `(p + i) for every positive
integer i. At the beginning of a new phase, all decision variables that have been changed
fewer than k times are set as in OPT, resulting in the current solution ALGp (note that the
algorithm crucially depends on k being even in order to produce a feasible solution).

Avitabile et al. show that the competitive ratio of the algorithm is at most

min
r>r0

rk(r − 1)
rk−1(r − 1)− r , (1)

where r0 is the solution to the equation rk−1(r − 1)− r = 0 in [1,+∞).
We will show how to obtain an improved analysis of the algorithm in the context of the

matching problem. Since we know optimal algorithms for k = 1, 2 [3] and for k = 3 (see
Section 2.4), for the analysis we assume k ≥ 4. We begin by a restatement of the update
phase that will help us exploit the structure of solutions obtained via augmenting paths.
More specifically, on every edge arrival the algorithm updates a current optimal solution
OPT.

At the beginning of a new phase, the algorithm produces a matching ALGp obtained from
ALGp−1 as follows: every edge e ∈ ALGp−1 \OPT is removed from the current matching,
and every edge e ∈ OPT \ALGp−1 which is of type strictly smaller than k is added to the
current matching. Note that edges adjacent to e have been removed, hence ALGp is indeed
a matching. Also note that all edges added or removed by the algorithm have their type
increased by one.

Since ALGp−1 and OPT are matchings, their symmetric difference, excluding type k
edges, consists of alternating cycles and alternating paths which can be of even or odd length.
This means that the algorithm simply applies at the beginning of every phase all those
alternating paths and cycles.

We start the analysis of the competitive ratio by bounding OPT during phase p as

r`(p) ≤ OPT < r`(p)+1, (2)

which follows by the definition of phases.
During the phase p ≥ 1 the competitive ratio is OPT/ALGp. The type of an edge

increases by 1 at most with each phase. Hence in the beginning of the k first phases the
algorithm synchronizes with OPT as there are no blocked edges yet, and as a result during
these phases the ratio is 1 at the beginning and does not exceed r by the upper bound in (2).

For the remaining phases we need the following argument.

I Proposition 1. For even k and any phase p ≥ k + 1, AMP maintains a matching ALGp

of size at least r`(p) − r`(p−k+1)+1.

Proof. We denote by the type of a vertex v the maximum type of the edges adjacent to v,
and by ni,p the number of vertices of type i in phase p. In addition, we denote by OPTp the
value of OPT at the beginning of phase p. With every new phase the type of a vertex can
increase at most by 1. Hence every vertex of type k in phase p had positive type in phase
p− k + 1. Thus

nk,p ≤
k∑

i=1
ni,p−k+1 ≤ 2 ·OPTp−k+1,

MFCS 2018



8:8 Online Maximum Matching with Recourse

where the last inequality uses the fact that the left hand side counts the number of vertices
matched by the algorithm. In phase p, the difference between the optimal matching and the
matching of the algorithm is at most the number of blocked augmenting paths, and each of
them contains at least two type k vertices. Hence

ALGp ≥ OPTp −
1
2 · nk,p

≥ OPTp −OPTp−k+1

> r`(p) − r`(p−k+1)+1.

The last inequality holds since r`(p) ≤ OPTp < r`(p)+1. J

Combining this proposition with the bounds (2) we obtain the following bound.

I Proposition 2. The competitive ratio of AMP for k ≥ 4 is upper bounded by the expression

min
r>1

rk

rk−1 − r
. (3)

In addition we can show that this is a better upper bound.

I Proposition 3. For all even k ≥ 4, Expression (1) upper bounds Expression (3).

The following theorem concludes the asymptotic analysis of the performance of AMP.

I Theorem 1. For all even k, AMP has competitive ratio 1 +O( log k
k ).

Proof sketch. We first sketch a simple argument based on the Puiseux series expansion [17]:
this is a type of power series that allows fractional powers, as opposed to only integer ones
(e.g., Taylor series). In the full version we provide a second proof that relies only on standard
calculus. Let r denote the optimal choice of the parameter, namely the one that minimizes (3).
By analyzing the derivative, it follows that r = (k − 1)1/(k−2), hence the competitive ratio is

at most (k−1)
k−1
k−2

k−2 , whose Puiseux series expansion at k =∞ is 1 + log k+1
k +O( 1

k2 ). J

2.2 The algorithm Greedy
We consider the algorithm Greedy, which repeatedly applies an arbitrary augmenting path
whenever possible. This algorithm achieves an upper bound of 3/2 for k = 2 as has been
shown in [3]. We show that the same guarantee holds for all even k.In what concerns the
lower bound, the idea is to force the algorithm to augment an arbitrarily long path in order
to create a configuration with an arbitrarily large number of blocked augmenting paths of
lengths 5, which locally have ratio 3/2.

I Proposition 4. The competitive ratio of Greedy is 3/2 for every even k and 2 for every
odd k.

2.3 The algorithm L-Greedy
The greedy algorithm has inferior performance because it augments along arbitrarily long
augmenting paths, therefore sometimes sacrificing edge budget for only a marginal increase
in the matching size. A natural idea towards an improvement would be to apply only short
augmenting paths, as they are more budget efficient. For technical reasons, we restrict the
choice of augmenting paths even further.
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We define the algorithm L-Greedy for some given parameter L, which applies any non-
blocked augmenting path of length at most 2L+1 that is in the symmetric difference between
the current matching and some particular optimal matching OPT. The latter is updated
after each edge arrival by applying an augmenting path for OPT. Note that L-Greedy may
not change its solution even if there is a short augmenting path in the current graph if it
contains edges which are not in this particular optimal matching OPT. We will later optimize
the parameter L as function of k.

2.3.1 Analysis of L-Greedy

We begin by observing that for L = 0 the algorithm collects greedily vertex disjoint edges
without any recourse, which is precisely the behavior of Greedy for k = 1 and has competitive
ratio 2. For L = 1 the algorithm L-Greedy applies only augmenting paths of length at
most 3. In this case, the same argument as in the proof of Proposition 4 shows that the
competitive ratio of L-Greedy is 3/2.

In what follows we analyze the general case L ≥ 2. To this end, we assign weights to
vertices in such a way that the total vertex weight equals the size of the current matching.
Therefore, whenever the size of the matching is increased by 1, a total weight of 1 is distributed
on the vertices along the augmenting path. Vertices in this path that were already matched
receive a weight α, where α ≥ 0 is some constant that we specify later. Finally, the two
vertices on the endpoints of the augmenting path receive the remaining weight, that is
1/2 − `α, where 2` + 1 is the length of the path. It follows, from this weight assignment,
that every unmatched vertex has weight 0, that every matched vertex has weight at least
1/2− Lα, and that every endpoint of a type k edge has weight at least 1/2− Lα+ (k − 1)α.

Suppose that the online algorithm reaches a configuration in which it cannot apply any
augmenting path, as specified in its statement. We consider the symmetric difference between
the matching produced by the algorithm and the optimal matching maintained internally by
the algorithm. This symmetric difference consists of alternating paths and/or alternating
cycles, and we will upper bound for each such component the ratio between the number
of edges in the optimal matching and the total vertex weight, which we call the local ratio.
In particular, a component in the symmetric difference falls in one of the following cases:
Either it is an augmenting path of length 2`+ 1 ≤ 2L+ 1, or an augmenting path of length
2`+ 1 > 2L+ 1, or an alternating cycle or alternating path of even length.

Case 1: Augmenting path of length 2` + 1 ≤ 2L + 1. Such a path contains at least
one edge of type k. It follows that ` ≥ 2, since an augmenting path of length 1 is a single
type 0 edge, and an augmenting path of length 3 has edge types respectively 0, t, 0 for
some odd t (and k is assumed to be even). The path contains 2` matched vertices, and
at least 2 of them are adjacent to a type k edge. Hence the total vertex weight is at least
2`
( 1

2 − Lα
)

+ 2(k − 1)α, and the local ratio of this component is at most

`+ 1
`− 2`Lα+ 2(k − 1)α. (4)

Case 2: Augmenting path of length 2` + 1 > 2L + 1. Such a path contains 2` matched
vertices and therefore the local ratio is at most

`+ 1
`− 2`Lα. (5)

MFCS 2018



8:10 Online Maximum Matching with Recourse

Case 3: Alternating cycle or path of even length. Such a component contains 2` matched
vertices and therefore the local ratio is at most

`

`− 2`Lα, (6)

which is dominated by (5). We choose α so as to minimize the maximum of the local ratios,

as defined by (4) and (5). Then for this choice of α we optimize L; namely we choose the
value L = b

√
k − 1c. Note that for k = 4, this leads to the choice L = 1, which we analyzed

in the beginning of the section. We obtain the following performance guarantee.

I Theorem 2. The competitive ratio of L-Greedy with L = b
√
k − 1c is at most

k(L+ 2)− 2
(L+ 1)(k − 1) = 1 +O

(
1√
k

)
,

for even k ≥ 6 and at most 3/2 for k = 4.

One can show that this analysis of L-Greedy is essentially tight.

2.4 Lower bound for deterministic algorithms
Boyar et al. [3] show that the deterministic competitive ratio of the problem is 2 for k = 1
and 3/2 for k = 2. We complete this picture by showing a lower bound of 1 + 1

k−1 for all
k ≥ 3. Note that the lower bound is tight for k = 3, as the algorithm Greedy, which works
by assuming that k is only 2, has competitive ratio 3/2.

I Theorem 3. The deterministic competitive ratio of the online matching problem with
edge-bounded recourse is at least 1 + 1

k−1 for all k ≥ 3.

Proof sketch. We consider three cases, namely the cases k = 3, k is even and at least 4,
and finally k is odd and at least 5. For each case we present an appropriate adversarial
argument. Due to space limitations we only present the case k = 3. Suppose, by way of
contradiction, that for k = 3 some algorithm claims a competitive ratio strictly smaller than
(3n+ 2)/(2n+ 2) for some arbitrary n ≥ 1. The adversary releases a single edge, creating an
augmenting path of length 1. Then the algorithm applies the augmenting path, which the
adversary extends by appending one edge on each side, creating an augmenting path of type
0,1,0, as shown in Figure 2(a). Since the current ratio is 2, the algorithm needs to apply this
path, which the adversary again extends by appending an edge on each side, creating an
augmenting path of type 0,1,2,1,0, as shown in Figure 2(b). Since the current ratio is 3/2,
the algorithm applies this path. In response the adversary appends an edge at each endpoint
of the type 3 edge, and at each endpoint of one of the type 1 edges, as shown in Figure 2(c).
The resulting graph has a blocked augmenting path of type 0,3,0, and an augmenting path
of type 0,1,0, as shown in Figure 2(c). The algorithm needs to apply the latter one as the
ratio is currently 5/3 > 3/2.

At this point, the adversary repeats this construction n − 1 times, by identifying the
shaded part of Figure 2(c) as the graph of Figure 2(a), and reapplying the above construction.
The final graph consists of n blocked augmenting paths of type 0,3,0 and n+ 1 edges of type
1 that belong both to the optimal and the algorithm’s matchings. Figure 2(d) illustrates this
final graph for n = 4. Hence the competitive ratio is (3n+ 1)/(2n+ 1), contradicting the
claimed ratio and showing a lower bound of 3/2. J
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Figure 2 Lower bound construction for the case k = 3.

Table 1 Summary of lower bounds (LB) and upper bounds on the competitive ratio for the
problem, for all even 4 ≤ k ≤ 22. The lower bounds for the arrival/departure model are discussed in
Section 3. The analysis of L-Greedy and AMP carry through to the (limited) edge arrival/departure
model. For k ≥ 22, the upper bound of AMP is superior to the upper bound of L-Greedy.

k LB (arr.) LB (arr./dep.) L-Greedy AMP
4 1.333333 1.428571 1.5 2.598076
6 1.2 1.263158 1.466667 1.869186
8 1.142857 1.179487 1.428571 1.613602
10 1.111111 1.134328 1.333333 1.480583
12 1.090909 1.106796 1.318182 1.398080
14 1.076923 1.088435 1.307692 1.341500
16 1.066666 1.075377 1.300000 1.300080
18 1.058823 1.065637 1.247059 1.268330
20 1.052631 1.058104 1.242105 1.243150
22 1.047619 1.052109 1.238095 1.222640

2.5 Comparing the algorithms L-Greedy and AMP
We have analyzed two deterministic online algorithms: the algorithm AMP, which has
competitive ratio 1+O (log(k)/k), and the algorithm L-Greedy, which has competitive ratio
1 + Θ(1/

√
k). Since the analysis of L-Greedy is tight, it follows that AMP is asymptotically

(i.e., for large k) superior to L-Greedy. However, for small values of k, namely k ≤ 20, we
observe that L-Greedy performs better, in comparison to the performance bound we have
shown for AMP. These findings are summarized in Table 1 and Figure 3.

3 The edge arrival/departure model

In this section we consider the online matching problem in the setting in which edges may
arrive but also depart online. In this context one can distinguish two models. In the limited
departure model an edge cannot be removed from the instance while it is matched by the
online algorithm, while in the stronger full departure model any edge can be removed.

It turns out that the latter model is quite restrictive. This is because it is possible for the
adversary to force an online algorithm to augment some augmenting path and then to remove
one of the edges in its matching. Eventually the algorithm can end up with blocked edges
(type k), without having the chance to augment its matching. This intuition is formalized in
the following lemma.

MFCS 2018
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Figure 3 Comparison of the competitive ratios of the algorithm AMP and the algorithm L-
Greedy.

I Lemma 4. The competitive ratio in the full departure model is 2.

Since the full departure model is very restrictive for the algorithm, as shown in Lemma 4,
we will concentrate on the limited departure model, as defined in the introduction. For this
model, we observe that the algorithms L-Greedy and AMP have the same performance
guarantee as in the edge arrival model. This is because the analysis of L-Greedy uses
weights on vertices which are not affected by edge departures, and the analysis of AMP is
based on an upper bound over the number of type k edges, which still holds under edge
departures. We thus focus on obtaining stronger lower bounds in this model (also included in
Table 1). We begin by observing that the bound of 3/2 of the competitive ratio in the edge
arrival model for k ∈ {2, 3} still holds for the limited departure model, where the adversary
is stronger. Hence, the smallest interesting value for k in this model is k = 4, for which we
provide the following specific lower bound. The proof will also provide some intuition about
the adversarial argument for general k.

I Theorem 5. The competitive ratio in the limited departure model is at least 10/7 for
k = 4.

Proof. We specify a particular adversary that maintains a graph such that the symmetric
difference between the matching produced by the algorithm and the optimal matching consists
only of augmenting paths and has no alternating cycles or alternating paths of even length.

The edge types along any path form a string over the integers {0, 1, . . . , k} with alternating
parity and starting and ending with 0. We call these strings alternating. Thus, rather than a
game played between the algorithm and the adversary on a graph, we will consider the game
played on a collection of alternating strings.

Whenever the algorithm applies an augmenting path, this translates into the increment
of each integer of the corresponding string, for example 01210 → 12321. The adversary
responds to this action by three types of actions. First, the adversary may possibly split the
string into smaller strings, for example 12321→ 123, 1 or 12321→ 1, 3, 1. This corresponds
to deleting some edges which are currently not matched by the algorithm. Second, the
adversary may possibly merge some of the resulting strings by concatenating them on both
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sides of a 0, for example 1, 1→ 101. Finally the adversary may append 0’s to the ends of the
strings, where needed to make them alternating, for example 101 → 01010. The last two
actions correspond to the insertion of (type 0) edges by the adversary.

The main idea is as follows. Consider an algorithm that claims a competitive ratio at
most (10− ε)/7 for some sufficiently small ε > 0. We will then show that the adversary can
force the algorithm into a final configuration of ratio at least 10/7, a contradiction.

We describe the current configuration by variables v, w, x, y, z which count the number of
the specific strings that are described in Figure 4. In particular, z is the total number of
strings 030 and 01410, which we call bad strings. The name is motivated by the fact that
01410 has worst local ratio among all blocked strings and is created from 030 strings.

The adversary starts by presenting the string 0, which the algorithm has to augment,
resulting in a single string 010. This unique adversarial action has been omitted for simplifi-
cation from Figure 4. From this moment onwards, we distinguish 3 different phases during
the game, decided by the adversary, and depicted in Figure 4. For example, if the algorithm
augments the string 01010, then in phase 1 the adversary will replace it with the strings 010
and 01210, while in phases 2 and 3 he will replace it with the string 0121210.

At a high level, the objective in phase 1 is to create a large enough number of bad strings,
while phase 2 creates a large enough proportion of bad strings. Last, phase 3 leads the
algorithm to a configuration which consists only of blocked strings.

The game starts with phase 1. During this phase the competitive ratio is at least 3/2,
thus forcing the algorithm to continue augmenting strings. After a finite number of steps,
the condition 7z + 3 > 4/ε holds and the game moves to phase 2. During the second phase
we have the invariants (1) 7z + 3 > 4/ε and (2) 2x + y + 2w ≤ z + 1. Invariant (1) holds
because the left-hand side will not decrease throughout the phase. Moreover, Invariant (2)
follows from the definitions of the involved parameters and the transitions between strings, as
defined by the statement of the phase. Together both invariants imply that the competitive
ratio is strictly larger than (10 − ε)/7, forcing the algorithm to augment strings. This is
because the competitive ratio can be lower bounded by

3z + 3y + 4(x+ w)
2z + 2y + 3(x+ w) ≥

10z + 2y + 4
7z + y + 3 ≥ 10z + 4

7z + 3 ≥
10− ε/2

7 ,

where the first inequality follows from Invariant (2) and the last one from (1).
In phase 2, at some moment eventually the condition z ≥ 8(x+ y+ v+w) will hold since

x + y + v + w does not change, but any sequence of x + y + 1 steps increases z. At that
moment, the game starts phase 3. We note that the condition is preserved during phase 3
and that it implies a ratio of at least 10/7, forcing the algorithm to a configuration consisting
only of the blocked strings 01410 and 012343210. This is because z ≥ 8(x+y+v+w) implies
z + y + x ≥ 2w + 8v, which in turn implies

3(x+ y + z) + 4w + 6v
2(x+ y + z) + 3w + 5v ≥

10
7 ,

where the left hand side lower bounds the competitive ratio in phase 3. J

We can generalize the ideas in the proof of Theorem 5 so as to obtain a non-trivial lower
bound for general even k ≥ 4, see Figure 5.

I Theorem 6. The competitive ratio in the limited departure model is at least k2−3k+6
k2−4k+7 , for

all even k ≥ 4.

Since k2−3k+6
k2−4k+7 > 1 + 1

k−1 for all k ≥ 4, Theorem 6 shows a stronger lower bound for even k
than Theorem 3 under the limited departure model.

MFCS 2018
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Figure 4 The lower bound construction in the arrival/departure model and k = 4.
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Figure 5 The lower bound construction in the arrival/departure model illustrated for k = 8.
Blocked strings are depicted in red. The arcs illustrate the adversarial strategy. For example, if the
algorithm augments the string 012345656543210, the adversary replaces the resulting string by two
strings 070 and two strings 0123450.
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