167 research outputs found

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Love Thy Neighbors: Image Annotation by Exploiting Image Metadata

    Get PDF
    Some images that are difficult to recognize on their own may become more clear in the context of a neighborhood of related images with similar social-network metadata. We build on this intuition to improve multilabel image annotation. Our model uses image metadata nonparametrically to generate neighborhoods of related images using Jaccard similarities, then uses a deep neural network to blend visual information from the image and its neighbors. Prior work typically models image metadata parametrically, in contrast, our nonparametric treatment allows our model to perform well even when the vocabulary of metadata changes between training and testing. We perform comprehensive experiments on the NUS-WIDE dataset, where we show that our model outperforms state-of-the-art methods for multilabel image annotation even when our model is forced to generalize to new types of metadata.Comment: Accepted to ICCV 201

    Automated Social Text Annotation With Joint Multilabel Attention Networks

    Get PDF
    Automated social text annotation is the task of suggesting a set of tags for shared documents on social media platforms. The automated annotation process can reduce users' cognitive overhead in tagging and improve tag management for better search, browsing, and recommendation of documents. It can be formulated as a multilabel classification problem. We propose a novel deep learning-based method for this problem and design an attention-based neural network with semantic-based regularization, which can mimic users' reading and annotation behavior to formulate better document representation, leveraging the semantic relations among labels. The network separately models the title and the content of each document and injects an explicit, title-guided attention mechanism into each sentence. To exploit the correlation among labels, we propose two semantic-based loss regularizers, i.e., similarity and subsumption, which enforce the output of the network to conform to label semantics. The model with the semantic-based loss regularizers is referred to as the joint multilabel attention network (JMAN). We conducted a comprehensive evaluation study and compared JMAN to the state-of-the-art baseline models, using four large, real-world social media data sets. In terms of F 1 , JMAN significantly outperformed bidirectional gated recurrent unit (Bi-GRU) relatively by around 12.8%-78.6% and the hierarchical attention network (HAN) by around 3.9%-23.8%. The JMAN model demonstrates advantages in convergence and training speed. Further improvement of performance was observed against latent Dirichlet allocation (LDA) and support vector machine (SVM). When applying the semantic-based loss regularizers, the performance of HAN and Bi-GRU in terms of F 1 was also boosted. It is also found that dynamic update of the label semantic matrices (JMAN d ) has the potential to further improve the performance of JMAN but at the cost of substantial memory and warrants further study

    Hierarchical Network with Label Embedding for Contextual Emotion Recognition

    Get PDF
    Emotion recognition has been used widely in various applications such as mental health monitoring and emotional management. Usually, emotion recognition is regarded as a text classification task. Emotion recognition is a more complex problem, and the relations of emotions expressed in a text are nonnegligible. In this paper, a hierarchical model with label embedding is proposed for contextual emotion recognition. Especially, a hierarchical model is utilized to learn the emotional representation of a given sentence based on its contextual information. To give emotion correlation-based recognition, a label embedding matrix is trained by joint learning, which contributes to the final prediction. Comparison experiments are conducted on Chinese emotional corpus RenCECps, and the experimental results indicate that our approach has a satisfying performance in textual emotion recognition task
    corecore