33,203 research outputs found

    Gated Linear Networks

    Full text link
    This paper presents a new family of backpropagation-free neural architectures, Gated Linear Networks (GLNs). What distinguishes GLNs from contemporary neural networks is the distributed and local nature of their credit assignment mechanism; each neuron directly predicts the target, forgoing the ability to learn feature representations in favor of rapid online learning. Individual neurons can model nonlinear functions via the use of data-dependent gating in conjunction with online convex optimization. We show that this architecture gives rise to universal learning capabilities in the limit, with effective model capacity increasing as a function of network size in a manner comparable with deep ReLU networks. Furthermore, we demonstrate that the GLN learning mechanism possesses extraordinary resilience to catastrophic forgetting, performing comparably to a MLP with dropout and Elastic Weight Consolidation on standard benchmarks. These desirable theoretical and empirical properties position GLNs as a complementary technique to contemporary offline deep learning methods.Comment: arXiv admin note: substantial text overlap with arXiv:1712.0189

    Extending Gated Linear Networks for Continual Learning

    Get PDF
    To incrementally learn multiple tasks from an indefinitely long stream of data is a real challenge for traditional machine learning models. If not carefully controlled, the learning of new knowledge strongly impacts on a model’s learned abilities, making it to forget how to solve past tasks. Continual learning faces this problem, called catastrophic forgetting, developing models able to continually learn new tasks and adapt to changes in the data distribution. In this dissertation, we consider the recently proposed family of continual learning models, called Gated Linear Networks (GLNs), and study two crucial aspects impacting on the amount of catastrophic forgetting affecting gated linear networks, namely, data standardization and gating mechanism. Data standardization is particularly challenging in the online/continual learning setting because data from future tasks is not available beforehand. The results obtained using an online standardization method show a considerably higher amount of forgetting compared to an offline –static– standardization. Interestingly, with the latter standardization, we observe that GLNs show almost no forgetting on the considered benchmark datasets. Secondly, for an effective GLNs, it is essential to tailor the hyperparameters of the gating mechanism to the data distribution. In this dissertation, we propose a gating strategy based on a set of prototypes and the resulting Voronoi tessellation. The experimental assessment shows that, in an ideal setting where the data distribution is known, the proposed approach is more robust to different data standardizations compared to the original one, based on a halfspace gating mechanism, and shows improved predictive performance. Finally, we propose an adaptive mechanism for the choice of prototypes, which expands and shrinks the set of prototypes in an online fashion, making the model suitable for practical continual learning applications. The experimental results show that the adaptive model performances are close to the ideal scenario where prototypes are directly sampled from the data distribution.To incrementally learn multiple tasks from an indefinitely long stream of data is a real challenge for traditional machine learning models. If not carefully controlled, the learning of new knowledge strongly impacts on a model’s learned abilities, making it to forget how to solve past tasks. Continual learning faces this problem, called catastrophic forgetting, developing models able to continually learn new tasks and adapt to changes in the data distribution. In this dissertation, we consider the recently proposed family of continual learning models, called Gated Linear Networks (GLNs), and study two crucial aspects impacting on the amount of catastrophic forgetting affecting gated linear networks, namely, data standardization and gating mechanism. Data standardization is particularly challenging in the online/continual learning setting because data from future tasks is not available beforehand. The results obtained using an online standardization method show a considerably higher amount of forgetting compared to an offline –static– standardization. Interestingly, with the latter standardization, we observe that GLNs show almost no forgetting on the considered benchmark datasets. Secondly, for an effective GLNs, it is essential to tailor the hyperparameters of the gating mechanism to the data distribution. In this dissertation, we propose a gating strategy based on a set of prototypes and the resulting Voronoi tessellation. The experimental assessment shows that, in an ideal setting where the data distribution is known, the proposed approach is more robust to different data standardizations compared to the original one, based on a halfspace gating mechanism, and shows improved predictive performance. Finally, we propose an adaptive mechanism for the choice of prototypes, which expands and shrinks the set of prototypes in an online fashion, making the model suitable for practical continual learning applications. The experimental results show that the adaptive model performances are close to the ideal scenario where prototypes are directly sampled from the data distribution

    Compressing Recurrent Neural Network with Tensor Train

    Full text link
    Recurrent Neural Network (RNN) are a popular choice for modeling temporal and sequential tasks and achieve many state-of-the-art performance on various complex problems. However, most of the state-of-the-art RNNs have millions of parameters and require many computational resources for training and predicting new data. This paper proposes an alternative RNN model to reduce the number of parameters significantly by representing the weight parameters based on Tensor Train (TT) format. In this paper, we implement the TT-format representation for several RNN architectures such as simple RNN and Gated Recurrent Unit (GRU). We compare and evaluate our proposed RNN model with uncompressed RNN model on sequence classification and sequence prediction tasks. Our proposed RNNs with TT-format are able to preserve the performance while reducing the number of RNN parameters significantly up to 40 times smaller.Comment: Accepted at IJCNN 201

    Improving speech recognition by revising gated recurrent units

    Full text link
    Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs have a rather complex design with three multiplicative gates, that might impair their efficient implementation. An attempt to simplify LSTMs has recently led to Gated Recurrent Units (GRUs), which are based on just two multiplicative gates. This paper builds on these efforts by further revising GRUs and proposing a simplified architecture potentially more suitable for speech recognition. The contribution of this work is two-fold. First, we suggest to remove the reset gate in the GRU design, resulting in a more efficient single-gate architecture. Second, we propose to replace tanh with ReLU activations in the state update equations. Results show that, in our implementation, the revised architecture reduces the per-epoch training time with more than 30% and consistently improves recognition performance across different tasks, input features, and noisy conditions when compared to a standard GRU

    Deformable Object Tracking with Gated Fusion

    Full text link
    The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Networks (CNNs). Existing tracking-by-detection based methods, however, fail to track objects with severe appearance variations. This is because the traditional convolutional operation is performed on fixed grids, and thus may not be able to find the correct response while the object is changing pose or under varying environmental conditions. In this paper, we propose a deformable convolution layer to enrich the target appearance representations in the tracking-by-detection framework. We aim to capture the target appearance variations via deformable convolution, which adaptively enhances its original features. In addition, we also propose a gated fusion scheme to control how the variations captured by the deformable convolution affect the original appearance. The enriched feature representation through deformable convolution facilitates the discrimination of the CNN classifier on the target object and background. Extensive experiments on the standard benchmarks show that the proposed tracker performs favorably against state-of-the-art methods
    • …
    corecore