23 research outputs found

    Digitization and the Content Industries

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationWe are seeing an extensive proliferation of wireless devices including various types and forms of sensor nodes that are increasingly becoming ingrained in our daily lives. There has been a significant growth in wireless devices capabilities as well. This proliferation and rapid growth of wireless devices and their capabilities has led to the development of many distributed sensing and computing applications. In this dissertation, we propose and evaluate novel, efficient approaches for localization and computation offloading that harness distributed sensing and computing in wireless networks. In a significant part of this dissertation, we exploit distributed sensing to create efficient localization applications. First, using the sensing power of a set of Radio frequency (RF) sensors, we propose energy efficient approaches for target tracking application. Second, leveraging the sensing power of a distributed set of existing wireless devices, e.g., smartphones, internet-of-things devices, laptops, and modems, etc., we propose a novel approach to locate spectrum offenders. Third, we build efficient sampling approaches to select mobile sensing devices required for spectrum offenders localization. We also enhance our sampling approaches to take into account selfish behaviors of mobile devices. Finally, we investigate an attack on location privacy where the location of people moving inside a private area can be inferred using the radio characteristics of wireless links that are leaked by legitimate transmitters deployed inside the private area, and develop the first solution to mitigate this attack. While we focus on harnessing distributed sensing for localization in a big part of this dissertation, in the remaining part of this dissertation, we harness the computing power of nearby wireless devices for a computation offloading application. Specially, we propose a multidimensional auction for allocating the tasks of a job among nearby mobile devices based on their computational capabilities and also the cost of computation at these devices with the goal of reducing the overall job completion time and being beneficial to all the parties involved

    Learning and Robustness With Applications To Mechanism Design

    Get PDF
    The design of economic mechanisms, especially auctions, is an increasingly important part of the modern economy. A particularly important property for a mechanism is strategyproofness -- the mechanism must be robust to strategic manipulations so that the participants in the mechanism have no incentive to lie. Yet in the important case when the mechanism designer's goal is to maximize their own revenue, the design of optimal strategyproof mechanisms has proved immensely difficult, with very little progress after decades of research. Recently, to escape this impasse, a number of works have parameterized auction mechanisms as deep neural networks, and used gradient descent to successfully learn approximately optimal and approximately strategyproof mechanisms. We present several improvements on these techniques. When an auction mechanism is represented as a neural network mapping bids from outcomes, strategyproofness can be thought of as a type of adversarial robustness. Making this connection explicit, we design a modified architecture for learning auctions which is amenable to integer-programming-based certification techniques from the adversarial robustness literature. Existing baselines are empirically strategyproof, but with no way to be certain how strong that guarantee really is. By contrast, we are able to provide perfectly tight bounds on the degree to which strategyproofness is violated at any given point. Existing neural networks for auctions learn to maximize revenue subject to strategyproofness. Yet in many auctions, fairness is also an important concern -- in particular, fairness with respect to the items in the auction, which may represent, for instance, ad impressions for different protected demographic groups. With our new architecture, ProportionNet, we impose fairness constraints in addition to the strategyproofness constraints, and find approximately fair, approximately optimal mechanisms which outperform baselines. With PreferenceNet, we extend this approach to notions of fairness that are learned from possibly vague human preferences. Existing network architectures can represent additive and unit-demand auctions, but are unable to imposing more complex exactly-k constraints on the allocations made to the bidders. By using the Sinkhorn algorithm to add differentiable matching constraints, we produce a network which can represent valid allocations in such settings. Finally, we present a new auction architecture which is a differentiable version of affine maximizer auctions, modified to offer lotteries in order to potentially increase revenue. This architecture is always perfectly strategyproof (avoiding the Lagrangian-based constrained optimization of RegretNet) -- to achieve this goal, however, we need to accept that we cannot in general represent the optimal auction

    Systems-compatible Incentives

    Get PDF
    Originally, the Internet was a technological playground, a collaborative endeavor among researchers who shared the common goal of achieving communication. Self-interest used not to be a concern, but the motivations of the Internet's participants have broadened. Today, the Internet consists of millions of commercial entities and nearly 2 billion users, who often have conflicting goals. For example, while Facebook gives users the illusion of access control, users do not have the ability to control how the personal data they upload is shared or sold by Facebook. Even in BitTorrent, where all users seemingly have the same motivation of downloading a file as quickly as possible, users can subvert the protocol to download more quickly without giving their fair share. These examples demonstrate that protocols that are merely technologically proficient are not enough. Successful networked systems must account for potentially competing interests. In this dissertation, I demonstrate how to build systems that give users incentives to follow the systems' protocols. To achieve incentive-compatible systems, I apply mechanisms from game theory and auction theory to protocol design. This approach has been considered in prior literature, but unfortunately has resulted in few real, deployed systems with incentives to cooperate. I identify the primary challenge in applying mechanism design and game theory to large-scale systems: the goals and assumptions of economic mechanisms often do not match those of networked systems. For example, while auction theory may assume a centralized clearing house, there is no analog in a decentralized system seeking to avoid single points of failure or centralized policies. Similarly, game theory often assumes that each player is able to observe everyone else's actions, or at the very least know how many other players there are, but maintaining perfect system-wide information is impossible in most systems. In other words, not all incentive mechanisms are systems-compatible. The main contribution of this dissertation is the design, implementation, and evaluation of various systems-compatible incentive mechanisms and their application to a wide range of deployable systems. These systems include BitTorrent, which is used to distribute a large file to a large number of downloaders, PeerWise, which leverages user cooperation to achieve lower latencies in Internet routing, and Hoodnets, a new system I present that allows users to share their cellular data access to obtain greater bandwidth on their mobile devices. Each of these systems represents a different point in the design space of systems-compatible incentives. Taken together, along with their implementations and evaluations, these systems demonstrate that systems-compatibility is crucial in achieving practical incentives in real systems. I present design principles outlining how to achieve systems-compatible incentives, which may serve an even broader range of systems than considered herein. I conclude this dissertation with what I consider to be the most important open problems in aligning the competing interests of the Internet's participants

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    The First 25 Years of the Bled eConference: Themes and Impacts

    Get PDF
    The Bled eConference is the longest-running themed conference associated with the Information Systems discipline. The focus throughout its first quarter-century has been the application of electronic tools, migrating progressively from Electronic Data Interchange (EDI) via Inter-Organisational Systems (IOS) and eCommerce to encompass all aspects of the use of networking facilities in industry and government, and more recently by individuals, groups and society as a whole. This paper reports on an examination of the conference titles and of the titles and abstracts of the 773 refereed papers published in the Proceedings since 1995. This identified a long and strong focus on categories of electronic business and corporate perspectives, which has broadened in recent years to encompass the democratic, the social and the personal. The conference\u27s extend well beyond the papers and their thousands of citations and tens of thousands of downloads. Other impacts have included innovative forms of support for the development of large numbers of graduate students, and the many international research collaborations that have been conceived and developed in a beautiful lake-side setting in Slovenia

    PERFORMANCE AND ANALYSIS OF SPOT TRUCK-LOAD PROCUREMENT MARKETS USING SEQUENTIAL AUCTIONS

    Get PDF
    Competition in a transportation marketplace is studied under different supply/demand conditions, auction formats, and carriers' behavioral assumptions. Carriers compete in a spot truck-load procurement market (TLPM) using sequential auctions. Carrier participation in a TLPM requires the ongoing solution of two distinct problems: profit maximization problem (chose best bid) and fleet management problem (best fleet assignment to serve acquired shipments). Sequential auctions are used to model an ongoing transportation market, where carrier competition is used to study carriers' dynamic vehicle routing technologies and decision making processes. Given the complexity of the bidding/fleet management problem, carriers can tackle it with different levels of sophistication. Carriers' decision making processes and rationality/bounded rationality assumptions are analyzed. A framework to study carrier behavior in TL sequential auctions is presented. Carriers' behavior is analyzed as a function of fleet management technology, auction format, carrier bounded rationality, market settings, and decision making complexity. The effects of fleet management technology asymmetries on a competitive marketplace are studied. A methodology to compare dynamic fleet management technologies is developed. Under a particular set of bounded rationality assumptions, bidding learning mechanisms are studied; reinforcement learning and fictitious play implementations are discussed. The performance of different auction formats is studied. Simulated scenarios are presented and their results discussed

    How to run an experimental auction: A review of recent advances

    Get PDF
    In this paper, we review the recent advances in the literature of experimental auctions and provide practical advice and guidelines for researchers. We focus on issues related to randomization to treatment and causal identification of treatment effects, on design issues such as selection between different elicitation formats, multiple auction groups in a single session, and house money effects. We also discuss sample size issues related to recent trends about pre-registration and pre-analysis plans. We then present the pros and cons of moving auction studies from the lab to the field and review the recent literature on behavioral factors that have been identified as important for auction outcomes
    corecore