72 research outputs found

    Why is German dependency parsing more reliable than constituent parsing?

    Get PDF
    In recent years, research in parsing has extended in several new directions. One of these directions is concerned with parsing languages other than English. Treebanks have become available for many European languages, but also for Arabic, Chinese, or Japanese. However, it was shown that parsing results on these treebanks depend on the types of treebank annotations used. Another direction in parsing research is the development of dependency parsers. Dependency parsing profits from the non-hierarchical nature of dependency relations, thus lexical information can be included in the parsing process in a much more natural way. Especially machine learning based approaches are very successful (cf. e.g.). The results achieved by these dependency parsers are very competitive although comparisons are difficult because of the differences in annotation. For English, the Penn Treebank has been converted to dependencies. For this version, Nivre et al. report an accuracy rate of 86.3%, as compared to an F-score of 92.1 for Charniaks parser. The Penn Chinese Treebank is also available in a constituent and a dependency representations. The best results reported for parsing experiments with this treebank give an F-score of 81.8 for the constituent version and 79.8% accuracy for the dependency version. The general trend in comparisons between constituent and dependency parsers is that the dependency parser performs slightly worse than the constituent parser. The only exception occurs for German, where F-scores for constituent plus grammatical function parses range between 51.4 and 75.3, depending on the treebank, NEGRA or TüBa-D/Z. The dependency parser based on a converted version of Tüba-D/Z, in contrast, reached an accuracy of 83.4%, i.e. 12 percent points better than the best constituent analysis including grammatical functions

    LFG without C-structures

    Get PDF
    We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small

    Sequence Tagging for Fast Dependency Parsing

    Get PDF
    [Abstract] Dependency parsing has been built upon the idea of using parsing methods based on shift-reduce or graph-based algorithms in order to identify binary dependency relations between the words in a sentence. In this study we adopt a radically different approach and cast full dependency parsing as a pure sequence tagging task. In particular, we apply a linearization function to the tree that results in an output label for each token that conveys information about the word’s dependency relations. We then follow a supervised strategy and train a bidirectional long short-term memory network to learn to predict such linearized trees. Contrary to the previous studies attempting this, the results show that this approach not only leads to accurate but also fast dependency parsing. Furthermore, we obtain even faster and more accurate parsers by recasting the problem as multitask learning, with a twofold objective: to reduce the output vocabulary and also to exploit hidden patterns coming from a second parsing paradigm (constituent grammars) when used as an auxiliary task.Ministerio de Economía y Competitividad; TIN2017-85160-C2-1-RXunta de Galicia; ED431B 2017/0

    Irish treebanking and parsing: a preliminary evaluation

    Get PDF
    Language resources are essential for linguistic research and the development of NLP applications. Low- density languages, such as Irish, therefore lack significant research in this area. This paper describes the early stages in the development of new language resources for Irish – namely the first Irish dependency treebank and the first Irish statistical dependency parser. We present the methodology behind building our new treebank and the steps we take to leverage upon the few existing resources. We discuss language specific choices made when defining our dependency labelling scheme, and describe interesting Irish language characteristics such as prepositional attachment, copula and clefting. We manually develop a small treebank of 300 sentences based on an existing POS-tagged corpus and report an inter-annotator agreement of 0.7902. We train MaltParser to achieve preliminary parsing results for Irish and describe a bootstrapping approach for further stages of development

    Improving dependency label accuracy using statistical post-editing: A cross-framework study

    Get PDF
    We present a statistical post-editing method for modifying the dependency labels in a dependency analysis. We test the method using two English datasets, three parsing systems and three labelled dependency schemes. We demonstrate how it can be used both to improve dependency label accuracy in parser output and highlight problems with and differences between constituency-to-dependency conversions

    A Re-ranking Model for Dependency Parser with Recursive Convolutional Neural Network

    Full text link
    In this work, we address the problem to model all the nodes (words or phrases) in a dependency tree with the dense representations. We propose a recursive convolutional neural network (RCNN) architecture to capture syntactic and compositional-semantic representations of phrases and words in a dependency tree. Different with the original recursive neural network, we introduce the convolution and pooling layers, which can model a variety of compositions by the feature maps and choose the most informative compositions by the pooling layers. Based on RCNN, we use a discriminative model to re-rank a kk-best list of candidate dependency parsing trees. The experiments show that RCNN is very effective to improve the state-of-the-art dependency parsing on both English and Chinese datasets

    Robust Subgraph Generation Improves Abstract Meaning Representation Parsing

    Full text link
    The Abstract Meaning Representation (AMR) is a representation for open-domain rich semantics, with potential use in fields like event extraction and machine translation. Node generation, typically done using a simple dictionary lookup, is currently an important limiting factor in AMR parsing. We propose a small set of actions that derive AMR subgraphs by transformations on spans of text, which allows for more robust learning of this stage. Our set of construction actions generalize better than the previous approach, and can be learned with a simple classifier. We improve on the previous state-of-the-art result for AMR parsing, boosting end-to-end performance by 3 F1_1 on both the LDC2013E117 and LDC2014T12 datasets.Comment: To appear in ACL 201
    corecore