649,056 research outputs found

    Harvesting Data from Advanced Technologies

    Get PDF
    Data streams are emerging everywhere such as Web logs, Web page click streams, sensor data streams, and credit card transaction flows. Different from traditional data sets, data streams are sequentially generated and arrive one by one rather than being available for random access before learning begins, and they are potentially huge or even infinite that it is impractical to store the whole data. To study learning from data streams, we target online learning, which generates a best–so far model on the fly by sequentially feeding in the newly arrived data, updates the model as needed, and then applies the learned model for accurate real-time prediction or classification in real-world applications. Several challenges arise from this scenario: first, data is not available for random access or even multiple access; second, data imbalance is a common situation; third, the performance of the model should be reasonable even when the amount of data is limited; fourth, the model should be updated easily but not frequently; and finally, the model should always be ready for prediction and classification. To meet these challenges, we investigate streaming feature selection by taking advantage of mutual information and group structures among candidate features. Streaming feature selection reduces the number of features by removing noisy, irrelevant, or redundant features and selecting relevant features on the fly, and brings about palpable effects for applications: speeding up the learning process, improving learning accuracy, enhancing generalization capability, and improving model interpretation. Compared with traditional feature selection, which can only handle pre-given data sets without considering the potential group structures among candidate features, streaming feature selection is able to handle streaming data and select meaningful and valuable feature sets with or without group structures on the fly. In this research, we propose 1) a novel streaming feature selection algorithm (GFSSF, Group Feature Selection with Streaming Features) by exploring mutual information and group structures among candidate features for both group and individual levels of feature selection from streaming data, 2) a lazy online prediction model with data fusion, feature selection and weighting technologies for real-time traffic prediction from heterogeneous sensor data streams, 3) a lazy online learning model (LB, Live Bayes) with dynamic resampling technology to learn from imbalanced embedded mobile sensor data streams for real-time activity recognition and user recognition, and 4) a lazy update online learning model (CMLR, Cost-sensitive Multinomial Logistic Regression) with streaming feature selection for accurate real-time classification from imbalanced and small sensor data streams. Finally, by integrating traffic flow theory, advanced sensors, data gathering, data fusion, feature selection and weighting, online learning and visualization technologies to estimate and visualize the current and future traffic, a real-time transportation prediction system named VTraffic is built for the Vermont Agency of Transportation

    Fast projections onto mixed-norm balls with applications

    Full text link
    Joint sparsity offers powerful structural cues for feature selection, especially for variables that are expected to demonstrate a "grouped" behavior. Such behavior is commonly modeled via group-lasso, multitask lasso, and related methods where feature selection is effected via mixed-norms. Several mixed-norm based sparse models have received substantial attention, and for some cases efficient algorithms are also available. Surprisingly, several constrained sparse models seem to be lacking scalable algorithms. We address this deficiency by presenting batch and online (stochastic-gradient) optimization methods, both of which rely on efficient projections onto mixed-norm balls. We illustrate our methods by applying them to the multitask lasso. We conclude by mentioning some open problems.Comment: Preprint of paper under revie

    A clustering based approach to reduce feature redundancy

    Get PDF
    This document is the Accepted Manuscript version of the following paper: Cordeiro de Amorim, R.,and Mirkin, B., ‘A clustering based approach to reduce feature redundancy’, in Proceedings, Andrzej M. J. Skulimowski and Janusz Kacprzyk, eds., Knowledge, Information and Creativity Support Systems: Recent Trends, Advances and Solutions, Selected papers from KICSS’2013 - 8th International Conference on Knowledge, Information, and Creativity Support Systems, Kraków, Poland, 7-9 November 2013. ISBN 978-3-319-19089-1, e-ISBN 978-3-319-19090-7. Available online at doi: 10.1007/978-3-319-19090-7. © Springer International Publishing Switzerland 2016.Research effort has recently focused on designing feature weighting clustering algorithms. These algorithms automatically calculate the weight of each feature, representing their degree of relevance, in a data set. However, since most of these evaluate one feature at a time they may have difficulties to cluster data sets containing features with similar information. If a group of features contain the same relevant information, these clustering algorithms set high weights to each feature in this group, instead of removing some because of their redundant nature. This paper introduces an unsupervised feature selection method that can be used in the data pre-processing step to reduce the number of redundant features in a data set. This method clusters similar features together and then selects a subset of representative features for each cluster. This selection is based on the maximum information compression index between each feature and its respective cluster centroid. We present an empirical validation for our method by comparing it with a popular unsupervised feature selection on three EEG data sets. We find that our method selects features that produce better cluster recovery, without the need for an extra user-defined parameter.Final Accepted Versio
    • …
    corecore