
This document is the Accepted Manuscript version of the following paper: Cordeiro de Amorim, R.,

and Mirkin, B., ‘A clustering based approach to reduce feature redundancy’, in Proceedings, Andrzej

M. J. Skulimowski and Janusz Kacprzyk, eds., Knowledge, Information and Creativity Support

Systems: Recent Trends, Advances and Solutions, Selected papers from KICSS’2013 - 8th

International Conference on Knowledge, Information, and Creativity Support Systems, Kraków,

Poland, 7-9 November 2013. ISBN: 978-3-319-19089-1, e-ISBN: 978-3-319-19090-7.

Available online at doi: 10.1007/978-3-319-19090-7.

© Springer International Publishing Switzerland 2016.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/82952985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://link.springer.com/book/10.1007%2F978-3-319-19090-7#about

A Clustering Based Approach to Reduce Feature
Redundancy

Renato Cordeiro de Amorim1 and Boris Mirkin2

1 School of Computer Science, University of Hertfordshire, College Lane Campus,
Hatfield AL10 9AB, UK.

2 Department of Computer Science and Information Systems, Birkbeck University of
London, Malet Street, London WC1E 7HX

r.amorim@herts.ac.uk, mirkin@dcs.bbk.ac.uk

Abstract. Research effort has recently focused on designing feature
weighting clustering algorithms. These algorithms automatically calcu-
late the weight of each feature, representing their degree of relevance, in a
data set. However, since most of these evaluate one feature at a time they
may have difficulties to cluster data sets containing features with similar
information. If a group of features contain the same relevant information,
these clustering algorithms set high weights to each feature in this group,
instead of removing some because of their redundant nature. This paper
introduces an unsupervised feature selection method that can be used in
the data pre-processing step to reduce the number of redundant features
in a data set. This method clusters similar features together and then
selects a subset of representative features for each cluster. This selec-
tion is based on the maximum information compression index between
each feature and its respective cluster centroid. We present an empirical
validation for our method by comparing it with a popular unsupervised
feature selection on three EEG data sets. We find that our method se-
lects features that produce better cluster recovery, without the need for
an extra user-defined parameter.

Keywords: Unsupervised feature selection, feature weighting, redun-
dant features, clustering, mental task separation.

1 Introduction

Reducing the cardinality of a data set, with out losing information, has been a
constant object of research effort for a considerable amount of time [19], [29].
The general aim of feature selection is to reduce such cardinality by removing
any feature in a data set that are not of interest. For instance, those that are
redundant containing the same information, those which are composed of noise,
or simply those that have no relevant to the particular task being performed.
There are indeed a various benefits that may originate from the use of a fea-
ture selection algorithm, for instance (i) the amount an algorithm, being this in
classification or clustering, takes to process a data set tends to decrease as the
cardinality of a data set decreases; (ii) it may reduce the probability of a model

describing an error or noise present in a given data set, instead of the underlying
data structure, a problem commonly known as overfitting; (iii) it may provide
a general improvement to an algorithm used afterwards, being this in terms of
accuracy or cluster recovery.

Feature selection either selects or deselects a particular feature v ∈ V of a
data set Y . It does so by providing each feature v ∈ V with a weight of either
one, or zero. The generalization of this method, in which each feature v ∈ V ,
receives a weight in the interval [0, 1] is known as feature weighting. Clearly, the
weight wv of a particular feature v aims to reflect the degree of relevance of v to
the particular task at hand. The use of feature weighting does not conflict with
feature selection as the former still allows a feature v to be deselected by setting
wv = 0. The major difference between feature selection and feature weighting is
that the latter recognizes that even among relevant features that may be different
degrees of relevance.

Feature weighting algorithms have been applied to hierarchical, as well as
partitional clustering [4], [8], [10], [14], [15], [16], [34]. Hierarchical clustering
algorithms aim to produce a set of clusters which have a tree-like relationship,
demonstrable through a dendogram, between them. These algorithms allow a
given entity yi ∈ Y to be assigned to more than one cluster, as long as these
clusters are related and the assignment happens at different levels of the tree.
Partitional clustering algorithms take a different approach, originally they pro-
duce disjoint clusters, allowing a given entity yi ∈ Y to be assigned to a single
cluster. Exceptions to this rule were introduced with Fuzzy C-Means [2] which
allows a given entity to belong to all clusters with a degree of membership
uik ∈ [0, 1].

Here we expand our previous work [11] with a particular interested in im-
proving Weighted K-Means (WK-Means) [4], and its Lp-based generalization,
the intelligent Minkowski Weighted K-Means (iMWK-Means) [10] in terms of
cluster recovery. Both algorithms apply cluster based feature weight, allowing a
feature v to have different weights at different clusters k = {1, 2, ...,K}, where
K is the total number of clusters. This weight wkv is calculated following the
intuitive assumption that if a feature v has a high relative dispersion in a partic-
ular cluster Sk then its degree of relevance, and by consequence its weight wkv,
should be low. More details related to both algorithms can be found in Section
2.

The WK-Means the iMWK-Means have been successfully applied in various
scenarios [4], [9], [10], [20], [21]. However, these algorithms do introduce a new
drawback. They both set wkv by evaluating one feature v ∈ V in each cluster
k = {1, 2, ...,K} at a time. Therefore, should a subset of features in V contain
the same relevant information, none will be excluded by receiving a weight of
zero. Quite the contrary, since they will all have similar small dispersions, each
of their weights will be equally high.

In this paper we introduce a clustering-based method for feature selection
that aims to reduce the number of redundant features in V . Our method, the
intelligent K-Means for Feature Selection (iKFS), can be used to address the

problem described above. The iKFS algorithm is used to cluster v ∈ V , rather
than yi ∈ Y . The number of clusters in V is found by using an anomalous
pattern approach based on intelligent K-Means [28], as well as the maximum
compression index (MIC) [29].

We evaluate the use of iKFS as a pre-processing step for both WK-Means and
the iMWK-Means by clustering three data sets containing Electroencephalog-
raphy (EEG) signals. These are high-dimensional data sets with 5,680 features
each, with patterns that are difficult to discern. For comparison we run similar
experiments using the features selected using the popular feature selection us-
ing feature similarity (FSFS) [29]. We find that iKFS tends to select a smaller
amount of features that are in fact more relevant than those selected by FSFS,
with the added benefit that iKFS does not require an extra user-defined param-
eter.

2 Background

Redundant features are those that contain similar information, by consequence
when clustering a data set most such features are unnecessary. In order to reduce
the number of redundant features in a data set our proposed method, iKFS, first
aims to find clusters containing similar features. Clustering is the non-trivial task
of creating K groups of entities so that those within the same group are similar
and those between groups are dissimilar. Clustering algorithms have been used
to solve problems in various fields of research, such as data mining, computer
vision, bioinformatics, text mining, etc [22], [28], [31], [36].

K-Means [1], [23] is among the most popular clustering algorithms. It per-
forms partitional clustering, dividing a data set Y into K disjoint clusters S =
{S1, S2, ..., SK}. K-Means represents a given cluster Sk by its centre of gravity,
the centroid ck. Each feature v ∈ V of a centroid, represented by ckv, is equiv-

alent to the average of v over each entity in Sk, ckv =
∑

yi∈Sk
yiv

|Sk| , assuming

Euclidean distance. K-Means iteratively minimizes the the sum of the distances
between each entity yi ∈ Y and its respective centroid.

W (S,C) =

K∑
k=1

∑
yi∈Sk

∑
v∈V

(yiv − ckv)2, (1)

where C = {c1, c2, ..., cK}. There are a number of reasons for the popularity of
K-Means, among these: it is a easy to implement, relatively fast algorithm, which
is also intuitively easy to understand. In fact, the minimization of the K-Means
criterion (1) has only the three steps below.

1. Assign the values of K random entities from Y to the initial centroids
c1, c2, ..., cK ;

2. Assign each entity yi ∈ Y to the cluster represented by its closest centroid;
3. Update each centroid to the centre of gravity of its cluster, and go back to

Step 2. Iterations cease when the algorithm converges.

The complexity of K-Means is of O(nKt), where t is the number of iterations
K-Means takes to converge, and n the number of entities in Y . Although it is
difficult to determine the value of t beforehand, we have shown that this tends to
be small, particularly when K-Means is initialized with relevant, rather than ran-
dom, centroids [7]. Other clustering algorithms can be much slower, for instance
hierarchical algorithms have a complexity of at least O(n2). Implementations of
K-Means can be frequently found in software packages, such as MATLAB, R,
SPSS, etc.

Although popular, K-Means does have drawbacks. Some of which have been
target of research effort for a long time. For instance, K-Means requires K (the
number of clusters in Y) to be known beforehand, and the clustering produced
by K-Means can be heavily affected by the initial centroids used in its first step
[3], [5], [24], [30], [33], [35].

Among the many algorithms addressing these two interrelated issues, intel-
ligent K-Means (iK-Means) seems quite successful [5], [7], [28]. This algorithm
finds the clusters in a data set by extracting one anomalous pattern at a time,
as per below.

1. Set cc, the centre of the data set Y .

2. Set a tentative centroid ct, the entity yi ∈ Y that is the farthest from cc.

3. Run K-Means on Y , using cc and ct as initial centroids. Do not allow cc to
move during the clustering.

4. If the |Sct | ≥ θ, add ct to Cinit, otherwise discard ct. In any case, remove
the entities in Sct from Y .

5. If there are entities in Y , go to Step 2.

6. Run K-Means, initialized with the centroids in Cinit and K = |Cinit|.

Recently, research effort has focused on the fact that K-Means treats all fea-
tures vinV equally, instead of taking into account that different features may
have different degrees of relevance [17], [25]. Weighted K-Means (WK-Means)
and the intelligent Minkowski Weighted K-Means (iMWK-Means), are of par-
ticular interest to us, because of their excellent ability to recover clusters [4], [9],
[10], [20], [21].

The main difference between WK-Means and iMWK-Means is the distance
measure in use. While the former applies the squared Euclidean distance, the
latter makes a generalization of this by using the pth root of the Minkowski (Lp)
distance. Both algorithms add a cluster dependent weight, wkv to the distance
in use. To avoid linearity, this weight is put to the power of an user-defined
exponent. The distance measure between an entity yi ∈ Y and a centroid ck ∈ C
in WK-Means is then d(yi, ck) =

∑
v∈V w

β
kv|yiv − ckv|2. In iMWK-Means, the

distance exponent is the same as the weight exponent, making it possible to
interpret wkv as a feature re-scaling factor, for any exponent. The distance used
by iMWK-Means follows.

dp(yi, ck) =
∑
v∈V

wpkv|yiv − ckv|
p. (2)

Substituting the distance in the K-Means criterion (1) by the adjusted weighted
distance (2) we obtain the iMWK-Means criterion.

Wp(S,C,w) =

K∑
k=1

∑
yi∈SK

∑
v∈V

wpkv|yiv − ckv|
p. (3)

The exponent p is a user-defined parameter that affects equally the distance and
the weights in 3. The calculation of wkv for k = 1, 2, ...,K and each v ∈ V follows
the intuitive idea that if a feature v has a smaller relative dispersion in cluster
Sk than a different feature u ∈ V , then v should have a higher weight in Sk than
u. We formalize this with the equation below.

wkv =
1∑

u∈V [Dkvp/Dkup]1/(p−1)
, (4)

where the dispersion of v at cluster Sk and specific p is given by Dkvp =∑
yi∈Sk

|yiv−ckv|p. For a given cluster Sk, the weights are subject to
∑
v∈V wkv =

1, and a crisp clustering, in which an entity yi ∈ Y can only be assigned to a
single cluster Sk. The equations for WK-Means are similar to all the above, but
with a distance exponent always equal to two. We formalise the iMWK-Means
algorithm below.

1. Obtain the initial centroids C = {c1, c2, ..., cK} by applying the iK-Means
algorithm, using the distance in Equation 2. Set each cluster Sk ← ∅.

2. Assign each entity yi ∈ Y to the cluster Sk represented by the closest ck,
using (2). Should there be no change in S, stop.

3. Update each centroid in C to the Minkowski centre of their respective clus-
ters.

4. Update each weight wkv, using Equation (4). Go to step 2.

The Minkowski centre of a given feature v for a cluster Sk can be found over each
entity yiv ∈ Sk by using a steepest descent algorithm [10]. The WK-Means algo-
rithm applies the squared Euclidean distance. In this we still have a user-defined
exponent to set, but this is solely a weight exponent, the distance exponent is
always two. The iMWK-Means is initialized with a modified version of the in-
telligent K-Means algorithm [28], which uses the weighted Minkowski distance
(2).

The feature weighting procedure used by both WK-Means and iMWK-Means
would not deal properly with a subset of V in which features contain relevant,
but redundant information. Such features would have similarly low dispersions.
Since a single weight wkv is calculated at a time these features would have their
weights set to a similarly high value. We believe that this issue makes the removal
of redundant features prior to the use of either WK-Means or iMWK-Means,
beneficial.

Feature selection using feature similarity (FSFS) [29] is one of the most pop-
ular unsupervised algorithms that fits to our needs. In this the authors identify

features containing similar information by using the maximum information com-
pression index (MIC). This index is defined below, for the variables x and y.

2λ2(x, y) =

var(x) + var(y)−
√

(var(x) + var(y))2 − 4var(x)var(y)(1− p(x, y)2), (5)

where p(x, y) is the correlation coefficient given by cov(x,y)√
var(x)var(y)

. MIC has vari-

ous interesting properties, such as being invariant to the rotation of the variables
and to the translation of the data set [29]. FSFS applies MIC as applied as fol-
lows.

1. Choose an initial value for k, following the constrain k ≤ |V |−1. Set R← V ,
standardise the features rather than entities (for details see Sections 3 and
4).

2. For each feature Fi ∈ R, calculate rki , the dissimilarity between Fi and its
kth nearest neighbour feature in R, using Equation: 5.

3. Find the feature Fi′ for which rki is minimum. Retain Fi′ and discard its k
nearest features. Set ε = rki′ .

4. Adjust k in relation to the number of features. If k < |R|−1, then k = |R|−1.
5. If k = 1 stop and output R.
6. Adjust k in relation to the similarity. While rki > ε

(a) k = k − 1
(b) rki = infFi∈Rr

k
i

(c) if k = 1 go to Step 5.
7. Go to Step 2.

The above is a popular and useful algorithm. However, we see two issues that
deserve to be addressed: (i) FSFS does not take into account the structure of
the data set while selecting features; (ii) FSFS requires the user to define a pa-
rameter, k, beforehand. This parameter may increase the algorithm’s flexibility,
but unfortunately we see no clear method to estimate it. These issues, added to
the inability of WK-Means and iMWK-Means to deal with redundant features
made us analyse the possibility of a clustering-based solution for feature selec-
tion that could be used as a pre-processing step. We present our method in the
next section.

3 Algorithm

In this section we present our feature selection method, intelligent K-Means for
feature selection (iKFS). Our aim is to cluster the features in V that are similar,
rather than the entities. By assigning similar features to the same cluster we can
identify and remove those that are redundant. Clearly there are issues to address
under this framework, for instance: (i) how many clusters of feature there would
be in a given data set Y ; (ii) given a cluster Sk of features, how many features
should be selected from it.

Regarding issue (ii), it can be very tempting to keep a single feature from
a cluster Sk of features, say the closest to the centroid ck. However, we do not
feel that each cluster should be treated the same, irrespective of its cardinality.
With this in mind, we have decided to keep a subset of features of Sk, this subset
cardinality is given by Fk.

Fk =

⌈
|Sk|
|Y |
∗K

⌉
, (6)

where |Sk| and |Y | represent the cardinality of a given cluster of features Sk
and the cardinality of the data set Y , respectively. One should note that since
we are clustering features, the original data set has to be transposed, so the
cardinality of Y is in fact the original number of features (Section 4 described
experiments with 5,680 features). Equation (6) requires the number of clusters
K to be known, taking us back to issue (i), its estimation. In our method we
find K by using iK-Means, which can also be used to find good initial centroids
for K-Means. The choice of iK-Means was based on its previous success as a
clustering algorithm in different scenarios [28], [5], [9]. We introduce our method
in full below.

1. Transpose the data set Y so that the original features become entities and
then standardise the data set.

2. Apply the iK-Means algorithm setting θ = 0.
3. For each cluster Sk, find Fk (Equation 6) features that have the highest

maximum information compression (Equation 5) in relation to ck. Put such
features in R.

4. Output the features in R.

We are interested in selecting features that are dissimilar to all others, such
features will most likely become singletons during the clustering process. In
order to avoid disregarding such features we set θ = 0.

4 Experiments

Electroencephalography (EEG) is the recording of high-dimensional noise-prone
signals that can be captured from a brain via a non-invasive procedure. There is
considerable research supporting the belief that these signals contain information
about the current state or intention of a subject’s mind [6], [12], [13], [18], [26].

We have recorded data from three healthy subjects (A, B and C) for our ex-
periments, using five bipolar electrodes (five channels), and a sampling frequency
of 250Hz. These five electrodes were placed on the subjects head following the
standard positions in the extended 10-20 system, using fc3 to pc3, fc1 to pc1, cz
to pz, fc2 to pc2, and fc4 to pc4.

Our aim is to perform mental task separation, in other words, given a set of
possible tasks we would like to know what particular task a subject is thinking
about. We have three possible tasks: (i) movement of the left hand; (ii) movement
of the right hand; (iii) movement of the feet. After visually suggesting what

task the subject should be thinking about, we recorded the EEG data for eight
seconds, constituting a trial. Here we intend to cluster trials into the right tasks.
Hence, the number of clusters is known to be three. We have gathered data
from 240, 120 and 350 trials for each subject, respectively. The difference in the
number of trials relates solely to the availability of subjects and staff.

We have pre-processed our data sets in two steps. First, we transformed the
data into its power spectrum density (PSD). EEG patterns are normally found
in the frequency space rather than amplitude, and PSD helps us to identify
periodicities in the data. This transformation has been successfully applied in
previous research [6], [12], [13], [18], [26].

Second, having a trial represented by 71 time-related samples each with 80
PSD-features, we generated a data matrix for each subject containing the re-
spective number of trials (240, 120 and 350) over 5,680 features (71 x 80). We
then standardised the data numerically.

yiv =
xiv − x̄v

0.5 ∗ (max(xv)−min(xv))
, (7)

where xiv represents the PSD value of trial i in feature v, and x̄v the average of
feature v over all trials in the data set. The standard deviation is surely more
popular in the standardization of data sets than the range. However, we have
opted for the latter as the former favours unimodal distributions [27], [32].

The FSFS algorithm requires an user-defined parameter k. We have per-
formed experiments with such parameter from 4,800 to 5,600 in steps of 100 for
WK-Means and iMWK-Means independently. With this interval it is possible
for FSFS to select a quantity of features close to that selected by iKFS. Note
that the optimal k for WK-Means may not be the same as for iMWK-Means.
Our method, iKFS, does not require any extra parameter, so the features used in
WK-Means and iMWK-Means when the data is pre-processed with iKFS are ex-
actly the same. Regarding the parameters required by the clustering algorithms
themselves, WK-Means and iMWK-Means, we have run experiments from 1.0
to 5.0 in steps of 0.1. In this paper we do not deal with their estimation.

Since we have the labels for each trial in the data sets, we present the best
possible results for each of these two algorithms in terms of their cluster recovery.
This is calculated by using a confusion matrix.

We show the results of our experiments in Table 1. We are happy to see that in
both algorithms, WK-Means and iMWK-Means, iKFS presents features that are
more representative. This is visible thanks to the differences in cluster recovery
when using FSFS and iKFS in both WK-Means and iMWK-Means. Table 1
also shows us that a much higher number of features does not necessarily means
features that are more representative, nor better final accuracy.

Table 1 does not present average or standard deviation values for iMWK-
Means because this is a deterministic algorithm, unlike WK-Means. This hap-
pens because iMWK-Means applies a version of iK-Means in its initialization,
making it output the same clustering for a given data set irrespective of how
many times it is run.

Table 1: Cluster recovery of WK-Means and iMWK-Means using the features selected
by iKFS and FSFS. The number of features is in the parenthesis.

Feature selection Exponent Accuracy
method Distance Weight Mean Std Max

Subject A
WK-Means FSFS (25) 2.0 3.9 48.2 2.5 52.1
WK-Means iKFS (20) 2.0 1.5 54.1 1.4 56.2
iMWK-Means FSFS (28) 3.2 3.2 - - 51.2
iMWK-Means iKFS (20) 4.5 4.5 - - 59.2
Subject B
WK-Means FSFS (472) 2.0 4.7 59.2 4.6 73.3
WK-Means iKFS (9) 2.0 3.6 68.5 4.7 76.7
iMWK-Means FSFS (393) 2.0 2.0 - - 65.0
iMWK-Means iKFS (9) 2.5 2.5 - - 66.7
Subject C
WK-Means FSFS (33) 2.0 4.7 39.6 1.8 42.3
WK-Means iKFS (11) 2.0 4.5 56.5 0.3 56.9
iMWK-Means FSFS (33) 4.6 4.6 - - 42.3
iMWK-Means iKFS (11) 1.8 1.8 - - 58.6

5 Conclusions

In this paper we introduced intelligent K-Means for feature selection (iKFS).
This algorithm reduces the number of features that contain similar information,
redundant features, in a given data set. It does so by generating clusters of
features, instead of entities, using the anomalous pattern method of iK-Means.
This anomalous pattern method is rather useful in finding the number of clusters
of features in the data set, together with good initial centroids for such clusters.
Features within the same cluster are then said to be similar, and by consequence
redundant to some degree. Our method selects a representative features from
each cluster, with the exact quantity calculated based on the cardinality of each
cluster and the features maximum information compression.

After explain the details of our method in Section 3 we go to an empirical
validation in Section 4. In this validation we perform a number of experiments
using data sets comprised of Electroencephalography (EEG) signals originated
from three healthy subjects. EEG data tends to be high-dimensional (our data
sets have 5,680 features) and noisy, hence our choice to use this type of data
in our experiments. We have experimented two feature weighting clustering al-
gorithms, WK-Means [4] and iMWK-Means [10], as well s two feature selection
algorithms used in the data pre-processing stage, our iKFS and feature selection
using feature similarity (FSFS) method [29].

The WK-Means and iMWK-Means algorithms perform feature weighting
which allows them to set different degrees of relevance to each feature, as well
as simply remove features from a data set. However, the feature weights are set
by analysing one feature at a time which means that if two features have the

exact same relevant information none will be removed. In our experiments we
have found that these feature weighting algorithms benefit from an extra data
pre-processing step to reduce the quantity of redundant features in a data set.
This is particularly true when iKFS is used in this extra pre-processing step
since unlike FSFS, iKFS takes the data structure into account when removing
features.

We do find the results we show here to be rather promising and our future
research will aim to further optimise the features selected by our method, as
well as experiment with data sets from other scenarios. We also intend to ex-
periment with feature weighting algorithms using fuzzy logic that have been
recently introduced [34].

References

1. G. H. Ball and D. J. Hall. A clustering technique for summarizing multivariate
data. Behavioral Science, 12(2):153–155, 1967.

2. J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Norwell
MA: Kluwer Academic Publishers, 1981.

3. M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with
Applications, 40(1):200–210, 2013.

4. E. Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang. An optimization algo-
rithm for clustering using weighted dissimilarity measures. Pattern recognition,
37(5):943–952, 2004.

5. M. M. T. Chiang and B. Mirkin. Intelligent choice of the number of clusters in
k-means clustering: an experimental study with different cluster spreads. Journal
of classification, 27(1):3–40, 2010.

6. S. Chiappa and S. Bengio. HMM and IOHMM modeling of EEG rhythms for
asynchronous BCI systems. In European Symposium on Artificial Neural Networks,
ESANN, pages 193–204, 2004.

7. R. C. de Amorim. An empirical evaluation of different initializations on the number
of k-means iterations. Lecture Notes in Computer Science, 7629:15–26, 2013.

8. R. C. de Amorim. Feature relevance in Ward’s hierarchical clustering using the lp
norm. Journal of Classification, (to appear).

9. R. C. de Amorim and P. Komisarczuk. On initializations for the Minkowski
weighted k-means. Lecture Notes in Computer Science, 7619:45–55, 2012.

10. R. C. de Amorim and B. Mirkin. Minkowski metric, feature weighting and anoma-
lous cluster initializing in k-means clustering. Pattern Recognition, 45(3):1061–
1075, 2012.

11. R. C. de Amorim and B. Mirkin. Removing redundant features via clustering: pre-
liminary results in mental task separation. In Proceedings of the 8th International
Conference on Knowledge, Information and Creativity Support Systems (KICSS).
November, 7-9. Krakow, Poland, 2013.

12. R. C. de Amorim, B. Mirkin, and J. Q. Gan. A method for classifying mental tasks
in the space of EEG transforms. Technical report, Technical Report BBKS-10-01,
Birkbeck University of London, London, 2010.

13. R. C. de Amorim, B. Mirkin, and J. Q. Gan. Anomalous pattern based clustering of
mental tasks with subject independent learning–some preliminary results. Artificial
Intelligence Research, 1(1):46–54, 2012.

14. G. De Soete. Optimal variable weighting for ultrametric and additive tree cluster-
ing. Quality and Quantity, 20(2-3):169–180, 1986.

15. G. De Soete. OVWTRE: A program for optimal variable weighting for ultrametric
and additive tree fitting. Journal of Classification, 5(1):101–104, 1988.

16. W. S. DeSarbo, J. D. Carroll, C. A. Linda, and P. E. Green. Synthesized clustering:
A method for amalgamating alternative clustering bases with differential weighting
of variables. Psychometrika, 49(1):57–78, 1984.

17. H. Frigui and O. Nasraoui. Unsupervised learning of prototypes and attribute
weights. Pattern recognition, 37(3):567–581, 2004.

18. J. Q. Gan. Self-adapting BCI based on unsupervised learning. In 3rd International
Workshop on Brain-Computer Interfaces, pages 50–51, 2006.

19. I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The
Journal of Machine Learning Research, 3:1157–1182, 2003.

20. J. Z. Huang, M. K. Ng, H. Rong, and Z. Li. Automated variable weighting in
k-means type clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(5):657–668, 2005.

21. J. Z. Huang, J. Xu, M. Ng, and Y. Ye. Weighting method for feature selection in
k-means. Computational Methods of Feature Selection, pages 193–209, 2008.

22. A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010.

23. J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. California, USA, 1967.

24. R. Maitra, A. D. Peterson, and A. P. Ghosh. A systematic evaluation of differ-
ent methods for initializing the k-means clustering algorithm. Transactions on
Knowledge and Data Engineering, pages 522–537, 2010.

25. V. Makarenkov and P. Legendre. Optimal variable weighting for ultrametric and
additive trees and k-means partitioning: Methods and software. Journal of Clas-
sification, 18(2):245–271, 2001.

26. J. Millan and J. Mouriño. Asynchronous BCI and local neural classifiers: an
overview of the adaptive brain interface project. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 11(2):159–161, 2003.

27. G. W. Milligan and M. C. Cooper. A study of standardization of variables in
cluster analysis. Journal of Classification, 5(2):181–204, 1988.

28. B. Mirkin. Clustering for data mining: a data recovery approach, volume 3. CRC
Press, 2005.

29. P. Mitra, C. A. Murthy, and S. K. Pal. Unsupervised feature selection using
feature similarity. IEEE transactions on pattern analysis and machine intelligence,
24(3):301–312, 2002.

30. J. M. Pena, J. A. Lozano, and P. Larranaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern recognition letters,
20(10):1027–1040, 1999.

31. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In KDD workshop on text mining, pages 525–526. Boston, 2000.

32. D. Steinley. Standardizing variables in k-means clustering. In Classification, clus-
tering, and data mining applications, pages 53–60. Springer, 2004.

33. D. Steinley and M. J. Brusco. Initializing k-means batch clustering: A critical
evaluation of several techniques. Journal of Classification, 24(1):99–121, 2007.

34. L. Svetlova, B. Mirkin, and H. Lei. MFWK-Means: Minkowski metric fuzzy
weighted k-means for high dimensional data clustering. In IEEE 14th Interna-

tional Conference on Information Reuse and Integration (IRI), pages 692–699.
IEEE, 2013.

35. R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in
a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

36. R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, 2005.

