3 research outputs found

    A Framework for TSV based 3D-IC to Analyze Aging and TSV Thermo-mechanical stress on Soft Errors

    Get PDF
    The CMOS aging, transient effects, and TSV thermomechanical stress degrade the resilience of 3D-ICs. The transients effects lead to soft errors and aggravated with the CMOS Bias temperature instability (BTI). In this paper, we analyze detrimental transient and BTI effect on soft error rate (SER) in 3D-ICs. However, TSV thermomechanical stress presents a considerable benefit by enhancing the critical charge (Qc) and reduce the SER due to decrease in the threshold voltage and increase in mobility of carriers in transistor present out of keep-out-zone and useful range. Therefore we propose a framework to evaluate the effect of transient, BTI, and TSV thermomechanical stress on critical charge and SER in 3D-ICs. Subsequently, through HSPICE simulation we show that for a lifetime of ten years and on the topmost layer of stacked 3D-IC, the reduction in SER of NAND gate by 5.12% - 9.05% and in 6T SRAM 2.51% - 4.76% and 3.77% - 5.64% decrease for storing 0 and 1 respectively

    A Cost-Effective Fault Tolerance Technique for Functional TSV in 3-D ICs

    Get PDF
    Regular and redundant through-silicon via (TSV) interconnects are used in fault tolerance techniques of 3-D IC. However, the fabrication process of TSVs results in defects that reduce the yield and reliability of TSVs. On the other hand, each TSV is associated with a significant amount of on-chip area overhead. Therefore, unlike the state-of-the-art fault tolerance architectures, here we propose the time division multiplexing access (TDMA)-based fault tolerance technique without using any redundant TSVs, which reduces the area overhead and enhances the yield. In the proposed technique, by means of TDMA, we reroute the signal through defect-free TSV. Subsequently, an architecture based on the proposed technique has been designed, evaluated, and validated on logic-on-logic 3-D IWLS'05 benchmark circuits using 130-nm technology node. The proposed technique is found to reduce the area overhead by 28.70%-40.60%, compared to the state-of-the-art architectures and results in a yield of 98.9%-99.8%

    Online Fault Tolerance Technique for TSV-Based 3-D-IC

    Get PDF
    corecore