5 research outputs found

    Envelope Analysis on Vibration Signals for Stator Winding Fault Early Detection in 3-Phase Induction Motors

    Get PDF
    This paper brings up a novel method for detecting induction motor stator winding faults at an early stage. The contribution of the work comes from the delicate handling of motor vibration by applying envelope analysis, which makes it possible to capture electrical short-circuit signature in mechanical signals, even if the magnitude of the fault is fairly incipient. Conventional induction motor condition-based maintenance methods usually involve current and voltage measurements, which could be expensive to collect, and vibration-based analysis is often only capable of detecting the fault when it is already quite significant. In contrast, the solution presented in this study provides a refreshing perspective by applying time synchronous averaging to remove the discrete frequency component, and amplitude demodulation to further enhance the signal with the help of kurtogram. Experimental results on a three-phase induction motor show that the method is also able to distinguish different fault severity levels

    Condition monitoring and fault detection of inverter-fed rotating machinery

    Get PDF
    Condition monitoring of rotating machinery is crucial in industry. It can prevent long term outages that can prove costly, prevent injury to machine operators, and lower product quality. Induction motors, often described as the workhorse of industry, are popular in industry because of their robustness, efficiency and the need for low maintenance. They are, however, prone to faults when used improperly or under strenuous conditions. Gearboxes are also an important component in industry, used to transmit motion and force by means of successively engaging teeth. They too are prone to damage and can disrupt industrial processes if failure is unplanned for. Reciprocating compressors are widely used in the petroleum and the petrochemical industry. Their complex structure, and operation under poor conditions makes them prone to faults, making condition monitoring necessary to prevent accidents, and for maintenance decision-making and cost minimization. Various techniques have been extensively investigated and found to be reliable tools for the identification of faults in these machines. This thesis, however, sets out to establish a single non-invasive tool that can be used to identify the faults on all these machines. Literature on condition monitoring of induction motors, gearboxes, and reciprocating compressors is extensively reviewed. The time, frequency, and time-frequency domain techniques that are used in this thesis are also discussed. Statistical indicators were used in the time domain, the Fourier Transform in the frequency domain, and Wavelet Transforms in the time-frequency domain. Vibration and current, which are two of the most popular parameters for fault detection, were considered. The test rig equipment that is used to carry to the experiments, which comprised a modified Machine Fault Simulator -Magnum (MFS-MG), is presented and discussed. The fault detection strategies rely on the presence of a fault signature. The test rig that was used allows for the simulation of individual or multiple concurrent faults to the test machinery. The experiments were carried out under steady-state and transient conditions with the faults in the machines isolated, and then with multiple faults implemented concurrently. The results of the fault detection strategies are analysed, and conclusions are drawn based on the performances of these tools in the detection of the faults in the machinery

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    Self-starting interior permanent magnet motor drive for electric submersible pumps

    Get PDF
    The interior permanent magnet (IPM) motor drive has evolved as the most energy efficient technology for modern motion control applications. Electric submersible pumps (ESPs) are electric motor driven fluid recovery systems. ESPs are widely used for producing oil and gas from deep downhole reservoirs. Standard ESPs are driven by classical squirrel cage induction motors (IMs) due to its self-starting capability from a balanced 3-phase ac excitation, ruggedness, simplicity, low cost and wide scale availability. Although there has been a tremendous growth in the design and development of highly efficient and reliable IPM motors for traction drive systems, application of the IPM motor technology in ESPs is still in its infancy due to challenges associated with the design and control of IPM motors. In this thesis, a new self-starting, efficient and reliable IPM motor drive technology is proposed for ESP systems to extend their efficiency, longevity and performance. This thesis investigates two different types of self-starting interior permanent magnet (IPM) motors: cage-equipped IPM motors known as line-start IPM motors and a new type of hybrid self-starting motors called hysteresis IPM motors. The limited synchronization capability of line-start IPM motors for high inertial loads is explained in this thesis. To overcome the starting and synchronization problems associated with line-start IPM motors, a new type of hybrid hysteresis IPM motor is proposed in this thesis. Equivalent circuit modeling and finite element analysis of hysteresis IPM motors are carried out in this thesis. A prototype 2.5 kW hysteresis IPM motor is constructed and experimentally tested in the laboratory. In order to limit the inrush current during starting, a stable soft starter has been designed, simulated and implemented for variable speed operations of the motor. The simulation and experimental results are presented and analyzed in this thesis. Self-starting IPM motors suffer from hunting induced torsional oscillations. Electric submersible pumps are vulnerable against sustained hunting and can experience premature failures. In this thesis, a novel stator current signature based diagnostic system for detection of torsional oscillations in IPM motor drives is proposed. The diagnostic system is non-intrusive, fast and suitable for remote condition monitoring of an ESP drive system. Finally, a position sensorless control technique is developed for an IPM motor drive operated from an offshore power supply. The proposed technique can reliably start and stabilize an IPM motor using a back-emf estimation based sensorless controller. The efficacy of the developed sensorless control technique is investigated for a prototype 3-phase, 6-pole, 480V, 10-HP submersible IPM motor drive. In summary, this thesis carried out modeling, analysis and control of different types of self-starting IPM motors to assess their viability for ESP drive systems. Different designs of self-starting IPM motors are presented in this thesis. In future, a fully scalable self-starting IPM motor drive will be designed and manufactured that can meet the industrial demands for high power, highly reliable and super-efficient ESP systems

    Reconnaissance des défauts de la machine asynchrone : application des modèles d’intelligence artificielle

    Get PDF
    Les machines asynchrones sont omniprésentes dans les systèmes de production automatisé à cause de leur robustesse et leur facilitée de mise en oeuvre. Néanmoins, ces moteurs électriques concèdent tout de même des défauts (ex : court-circuit entre spires, barre rotoriques rompues) menant à des arrêts non planifiés. Par conséquent, les industries manufacturières investissent des ressources importantes afin de les éviter avec des programmes de maintenance qui sont partiellement inefficace. C’est dans ce contexte que, depuis plusieurs décennies, des chercheurs proposent des travaux permettant de diagnostiquer l’état des machines asynchrones. Cependant, les solutions ne donnent que très rarement la localisation et l’estimation du degré de sévérité des anomalies qui ne permet pas de prioriser les actions pour l’amélioration de la maintenance. De plus, la majorité des moyens de diagnostic ne sont pas adaptifs à d’autres gammes de moteur et les études ne prennent pas en compte la commande des machines asynchrones pour les applications à vitesse et couple variables. Ainsi, nous proposons dans cette thèse une nouvelle approche pour l’amélioration du processus de maintenance par la reconnaissance des défauts de la machine asynchrone reposant principalement sur l’exploitation des modèles d’intelligence artificielle. Celle-ci permettra de détecter, de localiser et d’estimer le degré de sévérité des anomalies du moteur grâce à ses courants statoriques. La solution donnée dans cet ouvrage est adaptif et surtout a été testé pour une machine possédant une commande et un asservissement de vitesse avec des différents profils de vitesse et couple variables. Pour ce faire, la recherche proposée exploite les modèles mathématiques de la machine asynchrone et de ses défauts afin de simuler les différents comportements de celle-ci. Les simulations serviront à créer des bases de données grâce à l’extraction de caractéristiques issue du traitement des signaux. Chacune des séries de données appartient à une catégorie décrivant le défaut du moteur. Par la suite, des algorithmes de classification permettront de reconnaître les anomalies de la machine asynchrone. Nous présentons également une approche hiérarchique qui améliore le taux de reconnaissance des défectuosités du moteur à induction. Ce projet se situant à la frontière des domaines du génie électrique, du génie informatique et des mathématiques constitue un défi complexe et formidable de recherche scientifique. Induction machines are omnipresent in production systems because of their sturdiness and their ease of implementation. Nevertheless, these electrical motors still concede failures (e.g. inter-turn short circuit, broken rotor bar), which may lead to unplanned shutdowns. Consequently, manufacturing industries invest significant resources to avoid them with maintenance, which is partially inefficient. In this context, some studies propose solutions to abnormal diagnostic conditions of the induction machine. Nevertheless, they rarely localize the defect and estimate the severity of the failure, which does not allow prioritizing action for the maintenance improvement. In addition, solutions are not adaptive for other motors, and studies do not include the control part very useful for speed and torque variable applications. Thus, in this thesis, we propose a new approach improving the maintenance process by the recognition of the induction machine failures. It relies mainly on Artificial Intelligence models and will allow to detect, localize and to estimate the degree of severity of the asynchronous motor faults thanks to the exploitation of current signals. The solution given in this project is adaptive and have been tested for induction machines operating with a speed and drives control. In addition, several speed and resistant torque profiles have been applied. To do this, the research proposed exploits the mathematical models of the induction machine operating under the healthy and faulty conditions. Simulations allow creating some datasets thanks to the feature extractions and the signals processing. Each vector of data belongs to a category describing the failure. Then, classification algorithms will recognize the induction machine defects. We also present a hierarchical approach, which improves the recognition rate. This project being a mix of electrical engineering, informatics and mathematic is a complex and amazing challenge of scientific research
    corecore