35,925 research outputs found

    Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI

    Get PDF
    The general linear model (GLM) has been used to analyze simultaneous EEG–fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEG–fMRI data in which abnormalities are not apparent on scalp EEG

    Four-dimensional tomographic reconstruction by time domain decomposition

    Full text link
    Since the beginnings of tomography, the requirement that the sample does not change during the acquisition of one tomographic rotation is unchanged. We derived and successfully implemented a tomographic reconstruction method which relaxes this decades-old requirement of static samples. In the presented method, dynamic tomographic data sets are decomposed in the temporal domain using basis functions and deploying an L1 regularization technique where the penalty factor is taken for spatial and temporal derivatives. We implemented the iterative algorithm for solving the regularization problem on modern GPU systems to demonstrate its practical use

    HD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT

    Get PDF
    Accurate photometric CoRoT space observations of a secondary seismological target, HD 174884, led to the discovery that this star is an astrophysically important double-lined eclipsing spectroscopic binary in an eccentric orbit (e of about 0.3), unusual for its short (3.65705d) orbital period. The high eccentricity, coupled with the orientation of the binary orbit in space, explains the very unusual observed light curve with strongly unequal primary and secondary eclipses having the depth ratio of 1-to-100 in the CoRoT 'seismo' passband. Without the high accuracy of the CoRoT photometry, the secondary eclipse, 1.5 mmag deep, would have gone unnoticed. A spectroscopic follow-up program provided 45 high dispersion spectra. The analysis of the CoRoT light curve was performed with an adapted version of PHOEBE that supports CoRoT passbands. The final solution was obtained by simultaneous fitting of the light and the radial velocity curves. Individual star spectra were derived by spectrum disentangling. The uncertainties of the fit were derived by bootstrap resampling and the solution uniqueness was tested by heuristic scanning. The results provide a consistent picture of the system composed of two late B stars. The Fourier analysis of the light curve fit residuals yields two components, with orbital frequency multiples and an amplitude of about 0.1 mmag, which are tentatively interpreted as tidally induced pulsations. An extensive comparison with theoretical models is carried out by means of the Levenberg-Marquardt minimization technique and the discrepancy between models and the derived parameters is discussed. The best fitting models yield a young system age of 125 million years which is consistent with the eccentric orbit and synchronous component rotation at periastron.Comment: 15 pages, 12 figures. Accepted for publication by A&
    • …
    corecore