4,407 research outputs found

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned

    Unsupervised classification of data streams based on typicality and eccentricity data analytics

    Get PDF
    In this paper, we propose a novel approach to unsupervised and online data classification. The algorithm is based on the statistical analysis of selected features and development of a self-evolving fuzzy-rule-basis. It starts learning from an empty rule basis and, instead of offline training, it learns “on-the-fly”. It is free of parameters and, thus, fuzzy rules, number, size or radius of the classes do not need to be pre-defined. It is very suitable for the classification of online data streams with realtime constraints. The past data do not need to be stored in memory, since that the algorithm is recursive, which makes it memory and computational power efficient. It is able to handle concept-drift and concept-evolution due to its evolving nature, which means that, not only rules/classes can be updated, but new classes can be created as new concepts emerge from the data. It can perform fuzzy classification/soft-labeling, which is preferred over traditional crisp classification in many areas of application. The algorithm was validated with an industrial pilot plant, where online calculated period and amplitude of control signal were used as input to a fault diagnosis application. The approach, however, is generic and can be applied to different problems and with much higher dimensional inputs. The results obtained from the real data are very significant

    Automated Inference System for End-To-End Diagnosis of Network Performance Issues in Client-Terminal Devices

    Full text link
    Traditional network diagnosis methods of Client-Terminal Device (CTD) problems tend to be laborintensive, time consuming, and contribute to increased customer dissatisfaction. In this paper, we propose an automated solution for rapidly diagnose the root causes of network performance issues in CTD. Based on a new intelligent inference technique, we create the Intelligent Automated Client Diagnostic (IACD) system, which only relies on collection of Transmission Control Protocol (TCP) packet traces. Using soft-margin Support Vector Machine (SVM) classifiers, the system (i) distinguishes link problems from client problems and (ii) identifies characteristics unique to the specific fault to report the root cause. The modular design of the system enables support for new access link and fault types. Experimental evaluation demonstrated the capability of the IACD system to distinguish between faulty and healthy links and to diagnose the client faults with 98% accuracy. The system can perform fault diagnosis independent of the user's specific TCP implementation, enabling diagnosis of diverse range of client devicesComment: arXiv admin note: substantial text overlap with arXiv:1207.356

    CloudHealth: A Model-Driven Approach to Watch the Health of Cloud Services

    Full text link
    Cloud systems are complex and large systems where services provided by different operators must coexist and eventually cooperate. In such a complex environment, controlling the health of both the whole environment and the individual services is extremely important to timely and effectively react to misbehaviours, unexpected events, and failures. Although there are solutions to monitor cloud systems at different granularity levels, how to relate the many KPIs that can be collected about the health of the system and how health information can be properly reported to operators are open questions. This paper reports the early results we achieved in the challenge of monitoring the health of cloud systems. In particular we present CloudHealth, a model-based health monitoring approach that can be used by operators to watch specific quality attributes. The CloudHealth Monitoring Model describes how to operationalize high level monitoring goals by dividing them into subgoals, deriving metrics for the subgoals, and using probes to collect the metrics. We use the CloudHealth Monitoring Model to control the probes that must be deployed on the target system, the KPIs that are dynamically collected, and the visualization of the data in dashboards.Comment: 8 pages, 2 figures, 1 tabl

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    Data-driven remote fault detection and diagnosis of HVAC terminal units using machine learning techniques

    Get PDF
    The modernising and retrofitting of older buildings has created a drive to install building management systems (BMS) aimed to assist building managers pave the way towards smarter energy use, improve maintenance and increase occupants comfort inside a building. BMS is a computerised control system that controls and monitors a building’s equipment, services such as lighting, ventilation, power systems, fire and security systems, etc. Buildings are becoming more and more complex environments and energy consumption has globally increased to 40% in the past decades. Still, there is no generalised solution or standardisation method available to maintain and handle a building’s energy consumption. Thus this research aims to discover an intelligent solution for the building’s electrical and mechanical units that consume the most power. Indeed, remote control and monitoring of Heating, Ventilation and Air-Conditioning (HVAC) units based on the received information through the thousands of sensors and actuators, is a crucial task in BMS. Thus, it is a foremost task to identify faulty units automatically to optimise running and energy usage. Therefore, a comprehensive analysis on HVAC data and the development of computational intelligent methods for automatic fault detection and diagnosis is been presented here for a period of July 2015 to October 2015 on a real commercial building in London. This study mainly investigated one of the HVAC sub-units namely Fan-coil unit’s terminal unit (TU). It comprises of the three stages: data collection, pre-processing, and machine learning. Further to the aspects of machine learning algorithms for TU behaviour identification by employing unsupervised, supervised, and semi-supervised learning algorithms and their combination was employed to make an automatic intelligent solution for building services. The accuracy of these employed algorithms have been measured in both training and testing phases, results compared with different suitable algorithms, and validated through statistical measures. This research provides an intelligent solution for the real time prediction through the development of an effective automatic fault detection and diagnosis system creating a smarter way to handle the BMS data for energy optimisation
    • …
    corecore