131,503 research outputs found

    Refactoring, reengineering and evolution: paths to Geant4 uncertainty quantification and performance improvement

    Full text link
    Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are identified and their impact is elucidated. Preliminary quantitative results are reported.Comment: To be published in the Proc. CHEP (Computing in High Energy Physics) 201

    Ultrafast processing of pixel detector data with machine learning frameworks

    Full text link
    Modern photon science performed at high repetition rate free-electron laser (FEL) facilities and beyond relies on 2D pixel detectors operating at increasing frequencies (towards 100 kHz at LCLS-II) and producing rapidly increasing amounts of data (towards TB/s). This data must be rapidly stored for offline analysis and summarized in real time. While at LCLS all raw data has been stored, at LCLS-II this would lead to a prohibitive cost; instead, enabling real time processing of pixel detector raw data allows reducing the size and cost of online processing, offline processing and storage by orders of magnitude while preserving full photon information, by taking advantage of the compressibility of sparse data typical for LCLS-II applications. We investigated if recent developments in machine learning are useful in data processing for high speed pixel detectors and found that typical deep learning models and autoencoder architectures failed to yield useful noise reduction while preserving full photon information, presumably because of the very different statistics and feature sets between computer vision and radiation imaging. However, we redesigned in Tensorflow mathematically equivalent versions of the state-of-the-art, "classical" algorithms used at LCLS. The novel Tensorflow models resulted in elegant, compact and hardware agnostic code, gaining 1 to 2 orders of magnitude faster processing on an inexpensive consumer GPU, reducing by 3 orders of magnitude the projected cost of online analysis at LCLS-II. Computer vision a decade ago was dominated by hand-crafted filters; their structure inspired the deep learning revolution resulting in modern deep convolutional networks; similarly, our novel Tensorflow filters provide inspiration for designing future deep learning architectures for ultrafast and efficient processing and classification of pixel detector images at FEL facilities.Comment: 9 pages, 9 figure

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Revisiting the Core Ontology and Problem in Requirements Engineering

    Full text link
    In their seminal paper in the ACM Transactions on Software Engineering and Methodology, Zave and Jackson established a core ontology for Requirements Engineering (RE) and used it to formulate the "requirements problem", thereby defining what it means to successfully complete RE. Given that stakeholders of the system-to-be communicate the information needed to perform RE, we show that Zave and Jackson's ontology is incomplete. It does not cover all types of basic concerns that the stakeholders communicate. These include beliefs, desires, intentions, and attitudes. In response, we propose a core ontology that covers these concerns and is grounded in sound conceptual foundations resting on a foundational ontology. The new core ontology for RE leads to a new formulation of the requirements problem that extends Zave and Jackson's formulation. We thereby establish new standards for what minimum information should be represented in RE languages and new criteria for determining whether RE has been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International Requirements Engineering Conference, 2008 (RE'08). Best paper awar
    corecore